Hop bitterness in beer evaluated by computational analysis


  • María Paredes Ramos Hijos de Rivera SAU
  • José M López Vilariño Hijos de Rivera SAU




α and β-acids, prenylflavonoids, bitter taste receptors (TAS2R), computational docking, molecular dynamics, xanthohumol


Beer flavour and aroma are greatly influenced by the hop(s) employed in the brewing process. The iso-α-acids post wort boiling are the major compounds responsible for bitterness, which are detected by the bitter taste receptors (TAS2Rs) in oral taste buds. This family of receptors is activated in the presence of bitter molecules, which send chemical signals to the brain, making it possible to differentiate whether the detected molecules have a pleasant taste (or not). It is of interest to predict the behaviour of hop compounds towards bitter receptors such that the bitterness of different hop varieties can be predicted based on quantitative analysis of composition. Computational simulation, based in high-performance computing (HPC), allow the simulation of interactions of molecules with the various TAS2Rs, enabling the prediction the bitterness of these hop compounds. These techniques, will soon enable the design of beverages with customised flavours, greatly reducing the need for experimental evaluation. In this work, α and β-acids, iso-α-acids, and prenylflavonoids are analysed against the bitter receptors TAS2R10, TAS2R14 and TAS2R46.  Using computational blind docking and molecular dynamics, xanthohumol was identified to have the highest bitter profile.


Download data is not yet available.

Author Biographies

María Paredes Ramos, Hijos de Rivera SAU

Research & Development

José M López Vilariño, Hijos de Rivera SAU

Research & Development


Almaguer C, Schönberger C, Gastl M, Arendt EK, Becker T. 2014. Humulus lupulus - a story that begs to be told. A review. J Inst Brew 120:289–314. DOI: https://doi.org/10.1002/jib.160

Banegas-Luna AJ, Imbernón B, Llanes Castro A, Pérez-Garrido A, Cerón-Carrasco JP, Gesing S, Merelli I, D’Agostino D, Pérez-Sánchez H. 2019. Advances in distributed computing with modern drug discovery. Expert Opin Drug Discov 14:9–22. DOI: https://doi.org/10.1080/17460441.2019.1552936

Bastgen N, Becher T, Drusch S, Titze J. 2020. Usability and technological opportunities for a higher isomerization rate of α-acids: A review. J Am Soc of Brew Chem 79:17–25. DOI: https://doi.org/10.1080/03610470.2020.1840893

Berendsen HJC, van der Spoel D, van Drunen R. 1995. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56. DOI: https://doi.org/10.1016/0010-4655(95)00042-E

Born S, Levit A, Niv MY, Meyerhof W, Behrens M. 2013. The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands. J Neurosci 33: 201–213. DOI: https://doi.org/10.1523/JNEUROSCI.3248-12.2013

Boschin G, Scigliuolo GM, Resta D, Arnoldi A. 2014. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chem 145:34–40. DOI: https://doi.org/10.1016/j.foodchem.2013.07.076

Boyle NMO, Banck M, Craig A, Morley C, Vandermeersch T, Hutchison GR. 2011. Open Babel. J Cheminform 3:1–14. DOI: https://doi.org/10.1186/1758-2946-3-33

Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S. 2018. Protein–peptide docking: opportunities and challenges. Drug Discov Today 23:1530–1537. DOI: https://doi.org/10.1016/j.drudis.2018.05.006

Dagan-Wiener A, Di Pizio A, Nissim I, Bahia MS, Dubovski N, Margulis E, Niv MY. 2019. Bitterdb: Taste ligands and receptors database in 2019. Nucleic Acids Res 47:D1179–D1185. DOI: https://doi.org/10.1093/nar/gky974

Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. 2020. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 77:531–542. DOI: https://doi.org/10.1007/s00018-019-03194-2

Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD. 2015. Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421. DOI: https://doi.org/10.3390/molecules200713384

Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. 2010. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and cambridge structural database. J Chem Inf Model 50:572–584. DOI: https://doi.org/10.1021/ci100031x

Van Holle A, Muylle H, Haesaert G, Naudts D, De Keukeleire D, Roldán-Ruiz I, Van Landschoot A. 2021. Relevance of hop terroir for beer flavour. J Inst Brew 127:238–247. DOI: https://doi.org/10.1002/jib.648

Istvan ES, Deisenhofer J. 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164. DOI: https://doi.org/10.1126/science.1059344

Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. 2000. Crystal structure of the catalytic portion of human HMG-CoA reductase: Insights into regulation of activity and catalysis. EMBO J 19:819–830. DOI: https://doi.org/10.1093/emboj/19.5.819

Jawabrah Al-Hourani B, El Barghouthi MI, Al-Awaida W, McDonald R, Fattash IA, El Soubani F, Matalka K, Wuest F. 2020. Biomolecular docking, synthesis, crystal structure, and bioassay studies of 1-[4-(2-chloroethoxy)phenyl]-5-[4-(methylsulfonyl)phenyl]-1H-tetrazole and 2-(4-(5-(4-(methylsulfonyl)phenyl)-1H-tetrazol-1-yl)phenoxy)ethyl nitrate. J Mol Struc 1202:127323. DOI: https://doi.org/10.1016/j.molstruc.2019.127323

Kohl S, Behrens M, Dunkel A, Hofmann T, Meyerhof W. 2013. Amino acids and peptides activate at least five members of the human bitter taste receptor family. J Agric Food Chem 61:53–60. DOI: https://doi.org/10.1021/jf303146h

Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman R , Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC. 1996. Structural basis for selective inhibition of cyciooxygenase-2 by anti-inflammatory agents. Nature 384:644–648. DOI: https://doi.org/10.1038/384644a0

Kutzner C, Páll S, Fechner M, Esztermann A, de Groot L, Grubmüller H. 2019. More bang for your buck: Improved use of GPU nodes for GROMACS 2018. J Comput Chem 40:2418–2431. DOI: https://doi.org/10.1002/jcc.26011

Lang T, Lang R, Di Pizio A, Mittermeier VK, Schlagbauer V, Hofmann T, Behrens M. 2020. Numerous compounds orchestrate coffee’s bitterness. J Agric Food Chem 68:6692–6700. DOI: https://doi.org/10.1021/acs.jafc.0c01373

Lee Y, Basith S, Choi S. 2018. Recent advances in structure-based drug design targeting class A G protein-coupled receptors utilizing crystal structures and computational simulations. J Med Chem 61:1–46. DOI: https://doi.org/10.1021/acs.jmedchem.6b01453

Martin M, Deussen A. 2019. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit Rev Food Sci Nutr 59:1264–1283. DOI: https://doi.org/10.1080/10408398.2017.1402750

Meyerhof W, Batram C, Kuhn C, Brockhoff A, Chudoba E, Bufe B, Appendino G, Behrens M. 2009. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem Senses 35:157–170. DOI: https://doi.org/10.1093/chemse/bjp092

Mikyška A, Olšovská J, Slabý M, Štěrba K, Čerenak A, Košir IJ, Pavlovič M, Kolenc Z, Krofta K. 2018. Analytical and sensory profiles of Slovenian and Czech hop genotypes in single hopped beers. J Inst Brew 124:209–221. DOI: https://doi.org/10.1002/jib.494

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. DOI: https://doi.org/10.1002/jcc.21256

Nowak S, Di Pizio A, Levit A, Niv MY, Meyerhof W, Behrens M. 2018. Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochim Biophys Acta Gen Subj 1862:2162–2173. DOI: https://doi.org/10.1016/j.bbagen.2018.07.009

Ocvirk M, Grdadolnik J, Košir IJ. 2016. Determination of the botanical origin of hops (Humulus lupulus L.) using different analytical techniques in combination with statistical methods. J Inst Brew 122:452–461. DOI: https://doi.org/10.1002/jib.343

Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. 2012. Computational drug discovery. Acta Pharmacol Sin 33:1131–1140. DOI: https://doi.org/10.1038/aps.2012.109

Pérez-Sánchez H, Gesing S, Merelli I. 2016. High performance computing in drug discovery. Curr Drug Targets 17:1578–1579. DOI: https://doi.org/10.2174/138945011714160930230542

Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van der Spoel D, Hess B, Lindahl E. 2013. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. . DOI: https://doi.org/10.1093/bioinformatics/btt055

Sabín López A, Paredes-Ramos M, Lopez-Vilariño JM. 2020. The interest of xanthohumol as a health molecule. Tecnifood agosto:2–4.

Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. 2015. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447. DOI: https://doi.org/10.1093/nar/gkv315

Sandal M, Behrens M, Brockhoff A, Musiani F, Giorgetti A, Carloni P, Meyerhof W. 2015. Evidence for a transient additional ligand binding site in the TAS2R46 bitter taste receptor. J Chem Theory Comput 11:4439–4449. DOI: https://doi.org/10.1021/acs.jctc.5b00472

Schneider G, Clark DE. 2019. Automated de novo drug design: are we nearly there yet?. Angew Chem Int Ed 58:10792–10803. DOI: https://doi.org/10.1002/anie.201814681

Schönberger C, Kostelecky T. 2011. 125th anniversary review: The role of hops in brewing. J Inst Brew 117:259–267. DOI: https://doi.org/10.1002/j.2050-0416.2011.tb00471.x

Shaik FA, Jaggupilli A, Chelikani P. 2019. Highly conserved intracellular H208 residue influences agonist selectivity in bitter taste receptor T2R14. Biochim Biophys Acta Biomembr 1861:183057. DOI: https://doi.org/10.1016/j.bbamem.2019.183057

Shaik FA, Singh N, Arakawa M, Duan K, Bhullar RP, Chelikani P. 2016. Bitter taste receptors: Extraoral roles in pathophysiology. Int J Biochem Cell Biol 77:197–204. DOI: https://doi.org/10.1016/j.biocel.2016.03.011

Sousa Da Silva AW, Vranken WF. 2012. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:1–8. DOI: https://doi.org/10.1186/1756-0500-5-367

Tarragon E, Moreno JJ. 2020. Polyphenols and taste 2 receptors. Physiological, pathophysiological and pharmacological implications. Biochem Pharmacol 178:114086. DOI: https://doi.org/10.1016/j.bcp.2020.114086

Trott O, Olson A. 2010. Autodock Vina: improving the speed and accuracy of docking. J Comput Chem 31:455–461.

Vermeirssen V, Van Camp J, Verstraete W. 2002. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides. J Biochem Biophys Methods 51:75–87. DOI: https://doi.org/10.1016/S0165-022X(02)00006-4

Wiener A, Shudler M, Levit A, Niv MY. 2012. BitterDB: A database of bitter compounds. Nucleic Acids Res 40:413–419. DOI: https://doi.org/10.1093/nar/gkr755

Woo JA, Castaño M, Goss A, Kim D, Lewandowski EM, Chen Y, Liggett SB. 2019. Differential long-term regulation of TAS2R14 by structurally distinct agonists. FASEB J 33:12213–12225. DOI: https://doi.org/10.1096/fj.201802627RR

Wu CN, Sun LC, Chu YL, Yu RC, Hsieh CW, Hsu HY, Hsu FC, Cheng KC. 2020. Bioactive compounds with anti-oxidative and anti-inflammatory activities of hop extracts. Food Chem 330:127244. DOI: https://doi.org/10.1016/j.foodchem.2020.127244

Zhang Y, Wang X, Li X, Peng S, Wang S, Huang C Z, Zhang Q, Li D, Jiang J, Ouyang Q, Zhang Y, Li S, Qiao Y. 2017. Identification of a specific agonist of human TAS2R14 from Radix Bupleuri through virtual screening, functional evaluation and binding studies. Sci Rep 7:1–12. DOI: https://doi.org/10.1038/s41598-017-11720-0




How to Cite

Paredes Ramos, M., & M López Vilariño, J. (2023). Hop bitterness in beer evaluated by computational analysis. Journal of the Institute of Brewing, 129(2), 97–109. https://doi.org/10.58430/jib.v129i2.20