Malting - ‘the middle parts of fortune’ - a history of innovation and the enduring quest for efficiency

Authors

DOI:

https://doi.org/10.58430/jib.v130i3.58

Keywords:

malting, malt quality, efficiency, steeping, water, germination, kilning, energy

Abstract

Why was the work done: The malting process has long been a target for innovation to improve malt quality.  The efficiency of utilisation of labour, capital, water and energy, particularly the energy intensive kilning process is a key target for maltsters to reduce the environmental footprint and costs. Similarly, water use during steeping is a priority due to scarcity of water and regulations regarding the disposal of wastewater.

How was the work done: A comprehensive review of the literature was undertaken to identify prospects for improving the efficiency of the malting process.

What are the main findings: The malting process involves: (i) selection of barley variety of suitable quality (protein, microbiologically sound); (ii) cleaning and grading; (iii) steeping in water with dry rests over one to two days, moisture increases from 10-13 to >40% (ideally 42-45%); (iv) germination at 12-16°C in a flow of humid air to maintain malt moisture at 42-46%; (v) kilning at between 50-85°C with hot dry air and (vi) storage and blending of malt to specification. Analysis of these steps shows that there is potential to reduce water use and discharge by ~40% with the Optisteep® system. In terms of energy, kilning uses 80-90% of all malting energy (conventionally gas), which makes kilning attractive for energy savings. Marginal energy savings can be made by lowing malt moisture to <40% before germination/kiln transfer and reducing malt moisture to <9% rather than 4-6%. Novel solutions include using green malt and barley brewing which save energy (especially kilning). Although for brewing with unkilned green malt, significant challenges remain to be solved. However, over the past 25 years, maltsters have been successful in incrementally reducing kilning energy by 20-35% per decade.

Why is the work important: Increasing malting efficiency while maintaining or improving quality has important implications for reducing costs and reducing the environmental footprint of the malting process.

Downloads

Download data is not yet available.

References

Aalbers VJ, Drost, BW, Pesman L. 1983. Aerated steeping systems. Tech Q Master Brew Assoc Am 20:80-87.

Aastrup S, Riis P, Hansen JR. 1989. High vigour - the basis for high malting recovery. Proc Eur Brew Conv Congr, Zurich, IRL Press: Oxford, p. 171-178.

Ackermann A. 1998. Mycoflora of South African barley and malt. J Am Soc Brew Chem 54:169-176 DOI: https://doi.org/10.1094/ASBCJ-56-0169

Albini G, Freire FB, Freire JT. 2018. Barley: Effect of airflow reversal on fixed bed drying. Chem Eng Process 134:97-104. DOI: https://doi.org/10.1016/j.cep.2018.11.001

Ames JM. 1988. The Maillard browning reaction - an update. Chem Indus 17:558-561.

Anbessa Y, Juskiw P. 2012. Review: Strategies to increase nitrogen use efficiency of spring barley. Can J Plant Sci 92:617-625. DOI: https://doi.org/10.4141/cjps2011-207

Angus JF, Grace PR 2017. Nitrogen balance in Australia and nitrogen use efficiency on Australian farms. Soil Res 55:435-450. DOI: https://doi.org/10.1071/SR16325

Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochem 21:6536-6544. DOI: https://doi.org/10.1021/bi00268a033

Armstrong K. 2023. Hulless barley malt and brewing experiences. MBAA District Ontario Technical Conference, Ontario, Canada, 27th January.

Axcell B, Jankovsky D, Morral, P. 1983. Steeping: the crucial factor in determining malt quality. Brewers Digest 58:20–23.

Axcell BC. 2018. Don’t let sleeping dogmas lie - a personal journey in brewing. Brew Distil Intl 14(4):28-33.

Axcell BC, Morrall P, Tulej R, Murray J. 1984. Malt quality specifications - A safeguard or restriction on quality. Tech Q Master Brew Assoc Am 21:101-106.

Axcell BC, Tulej R, Mulder CJ. 1986. The influence of the malting process on malt fermentability performance. Proc Inst Brew (Australia & New Zealand) Conv, Hobart. 19: 63-69.

Axcell BC, van Nierop S, Vundla W. 2000. Malt induced premature flocculation. Tech Q Master Brew Assoc Am 37:501-504.

Back JF, Oakenfull D, Smith MB. 1979. Increased thermal stability of proteins in the presence of sugars and polyols. Biochem 18:5191-5196. DOI: https://doi.org/10.1021/bi00590a025

Backhouse D, Burgess LW. 2002. Climatic analysis of the distribution of Fusarium graminearum, F. psuedograminearum and F. culmorum on cereals in Australia. Aust Plant Path 31:321-327. DOI: https://doi.org/10.1071/AP02026

Baert JJ, de Clippeleer J, Hughes PS, de Cooman L, Aerts G. 2012. On the origin of free and bound staling aldehydes. J Agric Food Chem 60:1149-11472. DOI: https://doi.org/10.1021/jf303670z

Baker JL, Dick WD. 1905. Observations on the steeping of malting barley. J Inst Brew 11:372-395. DOI: https://doi.org/10.1002/j.2050-0416.1905.tb02137.x

Bamforth CW. 2000. Making sense of flavour change in beer. Tech Q Master Brew Assoc Am 37:165-171.

Bamforth CW. 2014. Dimethyl sulfide - significance, origins and control. J Am Soc Brew Chem 72:165-168. DOI: https://doi.org/10.1094/ASBCJ-2014-0610-01

Bamforth CW, Martin HL. 1981. -glucan and -glucan solubilase in malting and mashing. J Inst Brew 87:365-371. DOI: https://doi.org/10.1002/j.2050-0416.1981.tb04052.x

Bamforth CW, Roza JR, Kanauchi M. 2009. Storage of malt, thiol oxidase, and brewhouse performance. J Am Soc Brew Chem 67:89-94. DOI: https://doi.org/10.1094/ASBCJ-2009-0219-01

Bason ML, Ronalds JA, Wrigley CW. 1993. Prediction of safe storage life for sound and weather damaged malting barley. Cereal Foods World 38:361-363.

Bathgate GN. 1973. The biochemistry of malt kilning. Brewers' Digest 48:60-65.

Belcredi NB, Cerkal R, Jovanović I, Mejía JEA, Psota V, Středová H, Středa T. 2022. Germination of malting barley grains when using recycled steep-out water. Kvasny Prumysl 68:647-655. DOI: https://doi.org/10.18832/kp2022.68.647

Bethke PC, Gubler F, Jacobsen JV, Jones RL. 2004. Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847-855. DOI: https://doi.org/10.1007/s00425-004-1282-x

Bewley JD. 1997. Seed germination and dormancy. Plant Cell 9:1055-1066. DOI: https://doi.org/10.1105/tpc.9.7.1055

Bhatty RS. 1996. Production of food malt from hull-less barley. Cereal Chem 73:75-80.

Biogradlija A. 2024. Holland Malt opens emission-free Eemshaven malting plant. Industry and Energy. https://www.industryandenergy.eu/sustainable-energy/holland-malt-opens-emission-free-eemshaven-malting-plant/:18/13/2024.

Birgitte A, Thrane U, Svendsen A, Rasmussen IA. 1996. Associated field mycobiota on malting barley. Can J Bot 74:854–858. DOI: https://doi.org/10.1139/b96-106

Bishop LR 1944. Memorandum on barley germination. J Inst Brew 50:166-185. DOI: https://doi.org/10.1002/j.2050-0416.1944.tb01275.x

Brazil C, de Oliveira DF, Duarte RA, Galo JM, Lucchetta L, dos Santos E-C, Hashimoto EH. 2019. β-Glucanase addition in brewing malt produced by reduced time of germination. Brazilian Arch Biol Technol 62. DOI: https://doi.org/10.1590/1678-4324-2019180315

Bretträger M, Sacher B, Gastl M, Becker T. 2023. The Black Gap: understanding the potential roles of black fungal-derived enzymes in malting and brewing quality: a review. J Am Soc Brew Chem 82:93-108. DOI: https://doi.org/10.1080/03610470.2023.2249388

Briggs DE. 1978. Grain quality and germination. In: Barley. Chapman and Hall, London, UK. pp.174-221. DOI: https://doi.org/10.1007/978-94-009-5715-2_5

Briggs DE. 1987. Accelerating malting: a review of some lessons of the past from the United Kingdom. J Am Soc Brew Chem 45:1-6. DOI: https://doi.org/10.1094/ASBCJ-45-0001

Briggs DE. 1998. Malts and Malting. London, Blackie Academic and Professional. Gaithersberg: Aspen Publishing.

Briggs DE. 2004. The benefits of washing barley with hot water: a preliminary study. Tech Q Master Brew Assoc Am 41:390-393.

Briggs DE, Boulton CA, Brookes PA, Stevens R. 2004. Brewing: Science and Practice. New York, CRC Press. DOI: https://doi.org/10.1201/9780203024195

Briggs DE, Hough JS, Stevens R, Young TW. 1981. Malting and Brewing Science. Volume 1: Malt and sweet wort. London, Chapman and Hall. DOI: https://doi.org/10.1007/978-1-4615-1799-3

Briggs DE, Woods JL, Favier JF. 1994. Drying and storage treatments for overcoming dormancy in malting barley. J Inst Brew 100:271-278. DOI: https://doi.org/10.1002/j.2050-0416.1994.tb00823.x

Brightling J. 2018. Ammonia and the fertiliser industry: The development of ammonia at Billingham. Johnson Matthey Technol Rev 62:32-47. DOI: https://doi.org/10.1595/205651318X696341

Brookes PA. 1980. Practical experiences with barley abrasion. The Brewer 66:8-11.

Brookes PA. 1984. Recent malting development. The Brewer 70:502-506.

Brookes PA. 1993. The economics and utilisation of brewing materials in the 1990’s. Proc Proc Eur Brew Conv Congr. IRL Press: Oxford, Olso, p. 19-35. DOI: https://doi.org/10.1093/oso/9780199634668.003.0002

Brookes PA, Lovertt DA, MacWilliam, I.C. 1976. The steeping quality of barley. A review of the metabolic consequences of water uptake, and their practical implications. J Inst Brew 82:14-26. DOI: https://doi.org/10.1002/j.2050-0416.1976.tb03716.x

Brudzynski A, Roginski H. 1969. Comparative studies of kilned and freeze‐dried malts. J Inst Brew 75:472-476. DOI: https://doi.org/10.1002/j.2050-0416.1969.tb06385.x

Buhler T 1995. Economic methods for wort separation. Ferment 8:116-118.

Caddick LP, Shelton SP. 1998. Effect of cooling on the recovery from dormancy in Australian malting barley. Proc Aust Postharvest Tech Conf pp. 338-344.

Cao Z, Duan X, Yao P, Cui W, Cheng D, Zhang J, Jin Q, Chen J, Dai T, Shen W. 2017. Hydrogen gas is involved in auxin-induced lateral root formation by modulating nitric oxide synthesis. Intl J Mol Sci 18:2084. DOI: https://doi.org/10.3390/ijms18102084

Casey R. 1997. Lipoxygenase and bread making. Proc Eur Symp Enzymes Grain Process, Noorwijkentiout, TNO: Zeist, The Netherlands. 188-194.

Chapagain T, Good A. 2015. Yield and production gaps in rainfed wheat, barley, and canola in Alberta. Front Plant Sci 6:Article 990. DOI: https://doi.org/10.3389/fpls.2015.00990

Chen Q, Zhao X, Lei D, Hu S, Shen Z, Shen W, Xu X. 2017. Hydrogen-rich water pre-treatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. J Plant Growth Reg 83:69-82. DOI: https://doi.org/10.1007/s10725-017-0284-1

Cheng P, Wang J, Zhao Z, Kong L, Lou W, Zhang T, Jing D, Yu J, Shu Z, Huang L, Zhu W, Yang, Q, Shen W. 2021. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials. Plants 10:2331. DOI: https://doi.org/10.3390/plants10112331

Cheng P, Wang Y, Cai C, Zeng Y, Cheng X, Shen W. 2023. Molecular hydrogen positively regulates nitrate uptake and seed size by targeting nitrate reductase. Plant Physiol 193:2734-2749. DOI: https://doi.org/10.1093/plphys/kiad474

Christian M, Titze J, Ilberg V. 2011. Chemical structure of model substances related to their gushing-inducing and -suppressing activity J Am Soc Brew Chem 69:170-179. DOI: https://doi.org/10.1094/ASBCJ-2011-0716-01

Collins EJ. 1918. The structure of the integumentary system of the barley grain in relation to localized water absorption and semi-permeability. Ann Bot 127:381-414. DOI: https://doi.org/10.1093/oxfordjournals.aob.a089681

Colwell JD. 1963. The effect of fertilisers and season on the yield and composition of wheat in southern New South Wales. Aust J Exp Agric 3:51-64. DOI: https://doi.org/10.1071/EA9630051

Cook AH, Pollock JRA. 1952. Chemical aspects of malting: method for assaying the germination inhibitory activity of barley steeping water. J Inst Brew 58:407-413. DOI: https://doi.org/10.1002/j.2050-0416.1952.tb06190.x

Cooper C, Evans DE, Yousif A, Metz N, Koutoulis A. 2016. Comparison of the impact on performance of small-scale mashing with different proportions of unmalted barley, Ondea Pro®, malt and rice. J Inst Brew 122:218-227. DOI: https://doi.org/10.1002/jib.325

Cortés N, Kunz T, Suárez AF, Hughes P, Methner FJ. 2010. Development and correlation between the organic radical concentration in different malt types and oxidative beer stability. J Am Soc Brew Chem 68:107-113. DOI: https://doi.org/10.1094/ASBCJ-2010-0412-01

Crabb D, Kirsop BH. 1969. Water-sensitivity in barley I. Respiration studies and the influence of oxygen availability J Inst Brew 75:254-259. DOI: https://doi.org/10.1002/j.2050-0416.1969.tb03210.x

Cui W, Gao C, Fang P, Lin G, Shen W. 2013. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mater 260:715–724. DOI: https://doi.org/10.1016/j.jhazmat.2013.06.032

Danish Malting Group 2015. Constant focus on finding the first fuel - energy efficiency.22/5/2023:https://ens.dk/sites/ens.dk/files/Globalcooperation/dmg_faktaark.pdf

Davies N. 1991. Use of X-ray microanalysis to study hydration patterns in barley. J Cereal Sci 14:85–94. DOI: https://doi.org/10.1016/S0733-5210(09)80020-9

Davies N. 2006. Malt - a vital part of the brewers’ palate. Proc Eur Brew Conv Symp, ‘Drinkability’, Edinburgh. Monograph #34: Presentation #3.

Davies N. 2010. Cutting the carbon footprint of malting by 75% - achievable or just hot air? Tech Q Master Brew Assoc Am 47:23-28. DOI: https://doi.org/10.1094/TQ-47-4-0902-01

Davies N. 2020. Sustainability from farm to malt. Tech Q Master Brew Assoc Am 57:263-276. DOI: https://doi.org/10.1094/TQ-57-4-1227-01

Davies N. 2023. Best route to net zero? Regenerative agriculture - or organic? Brew Distil Intl 19(8):20-25.

De Wever, H, Boenne W, Danau M, Vanderspiegel N, Hardy K, Limbos J. 2006. Closing the water loop in a maltery: reuse tests at pilot-scale. Water Sci Technol 54:9-15. DOI: https://doi.org/10.2166/wst.2006.883

Deckers SM, Gebruers K, Baggerman G, Lorgouilloux Y, Delcour JA, Michiels C, Derdelinckx G, Martens J, Neven H. 2010. CO2-Hydrophobin structures acting as nano-bombs in beer. Part 1: A critical review of hypothesis and mechanisms. BrewSci 63:54-61.

Dekkers F, Bolat I, Dumont K. 2020. Method for producing malt. World Intellectual Property Organisation. Netherlands: Patent number: PCT/NL2020/0502779.

Dickson AD, Burkhart B. 1942. Changes in the barley kernel during malting: chemical comparisons of germ and distal portions. Cereal Chem 19:251–262.

Dineley M. 2016. Who were the first maltsters? The archaeological evidence for floor malting. Brew Distil Intl 12 (February):34-36.

Ditrych M, Filipowska W, Soszka A, Buyse J, Hofmann S, Jensen S, Jaskula-Goiris B, de Rouck G, Aerts G, Andersen ML, de Cooman L. 2024. Modelling of beer sensory staleness based on flavour instability parameters J Inst Brew 130:47-66. DOI: https://doi.org/10.58430/jib.v130i1.45

Donhauser S, Wagner D. 1990. The effect of amino acids, trace elements and fermentable carbohydrates on the quality of beer. Brauwelt Intl 130:268-279.

Doohan FM, Brennan J, Cooke BM. 2003. Influence of climatic factors on Fusarium species pathogenic to cereals. In Epidemiology of Mycotoxin Producing Fungi. Xu X, Bailey JA, Cooke BM. Dordrecht, Springer. pp.755–768. DOI: https://doi.org/10.1007/978-94-017-1452-5_10

Doran PJ, Briggs DE. 1993. Microorganisms and grain germination. J Inst Brew 99:165-170. DOI: https://doi.org/10.1002/j.2050-0416.1993.tb01160.x

Douglas LA. 1894. Two loves.

Drost BW, vanden Berg R, Freijee FJM, vander Velde EG, Hollemans M. 1990. Flavor stability. J Am Soc Brew Chem 48:124-131. DOI: https://doi.org/10.1094/ASBCJ-48-0124

Dugulin CA, de Rouck G, Cook DJ. 2021. Green malt for a green future–feasibility and challenges of brewing using freshly germinated (unkilned) malt: a review. J Am Soc Brew Chem 79:315-332. DOI: https://doi.org/10.1080/03610470.2021.1902710

Dugulin CA, Muñoz LMA, Buyse J, de Rouck G, Bolat I, Cook DJ. 2020. Brewing with 100% green malt – process development and key quality indicators. J Inst Brew 126:343-353. DOI: https://doi.org/10.1002/jib.620

ECHA. 2023. Information on chemicals. https://echa.europa.eu/

Edney, MJ, Langrell DE 2005. Effect of fermentable sugars and amino acids on fermentability of malts made from four barley varieties. Tech Q Master Brew Assoc Am 42:101-106.

Eglinton JK, Langridge P, Evans DE. 1998. Thermostability variation in alleles of barley beta-amylase. J Cereal Sci 28:301-309. DOI: https://doi.org/10.1016/S0733-5210(98)90010-8

Ehrenbergerová J, Březinová Belcredi N, Psota V, Hrstková P, Cerkal R, Newman CW. 2008. Changes caused by genotype and environmental conditions in beta-glucan content of spring barley for dietetically beneficial human nutrition. Plant Food Human Nut 63:111-117. DOI: https://doi.org/10.1007/s11130-008-0079-7

Essery RE, Kirsop BH, Pollock JRA. 1955. Studies in barley and malt: II. Tests for germination and water sensitivity. J Inst Brew 61:25-28. DOI: https://doi.org/10.1002/j.2050-0416.1954.tb02778.x

Evans DE. 2012. The impact of malt blending on extract, lautering efficiency and fermentability. J Am Soc Brew Chem 70:50-54. DOI: https://doi.org/10.1094/ASBCJ-2011-1208-01

Evans DE. 2021. Mashing. Pilot Knob, Minneapolis, MN, American Society of Brewing Chemists, and Master Brewers of the Americas.

Evans DE, Bamforth CW 2009. Beer foam: Achieving a suitable head. In Handbook of Alcoholic Beverages: Beer, a Quality Perspective. Bamforth CW, Russell I, Stewart GG. Burlington MA, Elsevier. Beer: pp.1-60. DOI: https://doi.org/10.1016/B978-0-12-669201-3.00001-4

Evans DE, Fox GP. 2017. The comparison of DP enzyme release and persistence with the production of yeast fermentable sugars during modified IoB 65°C and Congress programmed mashes. J Am Soc Brew Chem 75:302-311. DOI: https://doi.org/10.1094/ASBCJ-2017-4707-01

Evans DE, Kaur M. 2009. Keeping ‘sleepy’ yeast awake until ‘bedtime’: Understanding and avoiding PYF. Brew Distil Intl 5(5):38-40.

Evans DE, Collins HM, Eglinton JK, Wilhelmson A 2005. Assessing the impact of the level of diastatic power enzymes and their thermostability on the hydrolysis of starch during wort production to predict malt fermentability. J Am Soc Brew Chem 63:185-198. DOI: https://doi.org/10.1094/ASBCJ-63-0185

Evans DE, Goldsmith M, Dambergs R, Nischwitz R. 2011. A comprehensive revaluation of the small-scale Congress mash protocol parameters for determination of extract and fermentability. J Am Soc Brew Chem 69:13-27. DOI: https://doi.org/10.1094/ASBCJ-2011-0111-01

Evans DE, Goldsmith M, Redd KS, Nischwitz R, Lentini A. 2012. Impact of mashing conditions on extract and its fermentability, and the level of wort free amino nitrogen (FAN), β-glucan and lipids J Am Soc Brew Chem 70:39-49. DOI: https://doi.org/10.1094/ASBCJ-2012-0103-01

Evans, D.E., Li, C. and Eglinton, J.K. (2009). The properties and genetics of barley malt starch degrading enzymes. In Genetics and Improvement of Barley Malting Quality. Zhang G, Li C. New York, Springer Verlag: pp.143-189. DOI: https://doi.org/10.1007/978-3-642-01279-2_6

Evans DE, Li C, Eglinton JK 2008. Improved prediction of malt fermentability by the measurement of the diastatic power enzymes, -amylase, -amylase and limit dextrinase. I. Survey of the levels of diastatic power enzymes in commercial malts. J Am Soc Brew Chem 66:223-232. DOI: https://doi.org/10.1094/ASBCJ-2008-0909-02

Evans DE, Li C, Harasymow S, Roumeliotis S, Eglinton JK. 2009. Improved prediction of malt fermentability by the measurement of the diastatic power enzymes, -amylase, -amylase and limit dextrinase. II. Impact of barley genetics and gibberellin on levels of a-amylase and limit dextrinase in malt. J Am Soc Brew Chem 67:14-22. DOI: https://doi.org/10.1094/ASBCJ-2008-1206-01

Evans DE, Paynter BH, Izydorczyk MS, Li C. 2023. The impact of terroir on barley and malt quality – a critical review. J Inst Brew 129:211-258. DOI: https://doi.org/10.58430/jib.v129i4.38

Evans DE, Redd K, Harysamow S, Elvig N, Koutoulis A. 2014. Small scale comparison of the influence of malt quality on malt brewing with barley quality on barley brewing using Ondea Pro. J Am Soc Brew Chem 72:192-207. DOI: https://doi.org/10.1094/ASBCJ-2014-0630-01

Evans DE, Stewart SL, Stewart DC, Han, Z, Han P, Able JA. 2022. Profiling malt enzymes related to impact on malt fermentability, lautering and beer filtration performance of 94 commercially produced malt batches. J Am Soc Brew Chem 80:413-426. DOI: https://doi.org/10.1080/03610470.2021.1979891

Evans DE, Vilpola A, Stewart DC, Stenholm K, Pöyri S, Washington JM, Barr AR, Home S. 1999. Pilot scale investigation of the importance of the barley husk for mash filtration. Tech Q Master Brew Assoc Am 36:375-382.

Evans DE, Wallace W, Lance RCM, MacLeod LC. 1997. Measurement of beta-amylase in malting barley (Hordeum vulgare L.). Part 2: The effect of germination and kilning on beta-amylase. J Cereal Sci 26:241-250. DOI: https://doi.org/10.1006/jcrs.1997.0120

Evers AD, Blakeney AB, O'Brien L. 1999. Cereal structure and composition. Aust J Agric Res 50:629-650. DOI: https://doi.org/10.1071/AR98158

Ferrari-John RS, Katrib J, Zerva E, Davies N, Cook DJ, Dodds C, Kingman S. 2017. Electromagnetic heating for industrial kilning of malt: a feasibility study. Food Bioprocess Technol 10:687–698. DOI: https://doi.org/10.1007/s11947-016-1849-0

Finch‐Savage WE, Leubner‐Metzger G. 2006. Seed dormancy and the control of germination. New Phytol 171:501-523. DOI: https://doi.org/10.1111/j.1469-8137.2006.01787.x

Fincher GB. 1989. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Ann Rev Plant Physiol Plant Mol Biol 40:305-346. DOI: https://doi.org/10.1146/annurev.pp.40.060189.001513

Finkelstein R, Reeves W, Ariizumi T, Steber C 2008. Molecular aspects of seed dormancy. Ann Rev Plant Biol 59:387-415. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092740

Flannigan B. 2003. The microbiota of barley and malt. In: Brewing microbiology. Priest, F. G. and Campbell, I., Kluwer Academic/Plenum Publishers, New York: pp.113-180. DOI: https://doi.org/10.1007/978-1-4419-9250-5_4

Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A. 2006. Do nitric oxide donors mimic endogenous NO-related reponse in plants. Planta 224:1363-1372. DOI: https://doi.org/10.1007/s00425-006-0321-1

Folkes BF, Yemm EW. 1958. The respiration of barley plants. X. Respiration and the metabolism of amino-acids and proteins in germinating grain. New Phytol 57:106-131. DOI: https://doi.org/10.1111/j.1469-8137.1958.tb05920.x

Follstad MN, Christensen CM. 1962. Microflora of barley kernals. Appl Microbiol 10:331-336. DOI: https://doi.org/10.1128/am.10.4.331-336.1962

Frigon RP, Lee JC, 1972. The stabilization of calf-brain microtubule protein by sucrose. Arch Biochem Biophys 153:587-589. DOI: https://doi.org/10.1016/0003-9861(72)90376-1

Garbe L-A, Schwarz P, Ehmer A. 2009. Chapter 6: Beer gushing. In: Handbook of Alcoholic Beverages: Beer, a Quality Perspective. Bamforth CW, Russell I, Stewart GG. Burlington MA, Elsevier: pp.185-205. DOI: https://doi.org/10.1016/B978-0-12-669201-3.00006-3

Gardner RJ. 1973. The mechanism of gushing—a review. J Inst Brew 79:275-283. DOI: https://doi.org/10.1002/j.2050-0416.1973.tb03540.x

Gastl M, Spieleder E, Hermann M, Thiele F, Burberg F, Kogin A, Ikeda H, Back W, Narziss L. 2006. The influence of malt quality and malting technology on the flavour stability of beer. Monat Brauwissen Sept/Oct:163-175.

Geißinger C, Gastl M, Becker B. 2022. Enzymes from cereal and Fusarium metabolism involved in the malting process - a review. J Am Soc Brew Chem 80:1-16. DOI: https://doi.org/10.1080/03610470.2021.1911272

Ghavam, S., Vahdati, M., Wilson, I.A. and Styring, P. 2021. Sustainable ammonia production processes. Front Energy Res 9:Article 580808. DOI: https://doi.org/10.3389/fenrg.2021.580808

Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA. 2009. Amino acid uptake and yeast gene transcription during industrial brewery fermentation. J Am Soc Brew Chem 67:157-165. DOI: https://doi.org/10.1094/ASBCJ-2009-0720-01

GIWA 2023. Grain Industry Association of Western Australia (GIWA) Crop Report – February 2023. Western Australia, Australia. https://www.giwa.org.au/ accessed 20/7/2023).

Gordon AG. 1968. The interaction of dormancy and water-sensitivity with temperature. J Inst Brew 74:355-359. DOI: https://doi.org/10.1002/j.2050-0416.1968.tb03140.x

Green JW, Sanger MJ. 1956. Effect of hydrogen peroxide and peracetic acid in malthouse steep liquor. J Inst Brew 62:170-179. DOI: https://doi.org/10.1002/j.2050-0416.1956.tb02844.x

Greenhouse Gas Protocol. April 2024. A corporate accounting and reporting standard: https://ghgprotocol.org/corporate-standard.

Griffin OT, Pinner BC. 1965. The development of a static malting. J Inst Brew 71:324-329. DOI: https://doi.org/10.1002/j.2050-0416.1965.tb02065.x

Griffiths CM, MacWilliam IC. 1967. Retardation of modification and enzyme formation in barley endosperm by steep liquors and other substances. J Inst Brew 73:172-174. DOI: https://doi.org/10.1002/j.2050-0416.1967.tb03030.x

Griggs D. 2018. Does the technology of malting have an impact on the taste and aroma of base malt? Malt Flavor Aroma Symp, June 10-14. Minneapolis, MN, ASBC.

Gruss J. 1930. Semi-permeability of the pericarp and testa of the barley corn. J Inst Brew 36:394-395.

Guiga W, Boivin P, Ouarnier N, Fournier F, Fick M. 2008. Quantification of the inhibitory effect of steep effluents on barley germination. Process Biochem 43:311-319. DOI: https://doi.org/10.1016/j.procbio.2007.12.001

Gyllang H, Martinson E. 1976. Studies on the mycoflora of malt. J Inst Brew 82:350-352. DOI: https://doi.org/10.1002/j.2050-0416.1975.tb06962.x

Haikara A, Laitila A. 1995. Influence of lactic starter cultures on the quality of malt and beer. Proc Eur Brew Conv Congr, Brussels, IRL Press: Oxford, p. 249-256.

Haikara A, Uljas H, Suurnakki I. 1993. Lactic acid starter cultures in malting: A novel solution to gushing problems. Proc Eur Brew Conv Congr, Oslo, IRL Press: Oxford, p. 163-172. DOI: https://doi.org/10.1093/oso/9780199634668.003.0018

Haley PE, Stokes CH. 1987. Practical plant studies on barley respiration during the steeping process. Tech Q Master Brew Assoc Am 24:33-37.

Halstead M, Morrissy C., Fisk, S., Fox, G., Hayes, P. and Carrijo, D. 2023. Barley grain protein is influenced by genotype, environment, and nitrogen management and is the major driver of malting quality. Crop Sci 63:115-127. DOI: https://doi.org/10.1002/csc2.20842

Hamalainen JJ, Reinikainen P. 2007. A simulation model for malt enzyme activities in kilning. J Inst Brew 113:159-167. DOI: https://doi.org/10.1002/j.2050-0416.2007.tb00273.x

Hammond J. 2000. Yeast growth and nutrition. In: Brewing yeast fermentation performance. Smart K (ed). Blackwell Scientific, Oxford: pp.77-85.

Hardie DG. 1975. Control of carbohydrate formation by gibberellic acid in barley endosperm. Phytochem 14:1719-1722. DOI: https://doi.org/10.1016/0031-9422(75)85281-2

Harries M, Flower KC, Scanlan CA. 2021. Sustainability of nutrient management in grain production systems of south-west Australia. Crop Pasture Sci 72:197-212. DOI: https://doi.org/10.1071/CP20403

Hauner M, Eichhorn K, Vearasilp S, Thanapornpoonpong S, Changrue V. 2019. Model calculation of a solar assisted system for a malt kiln. BrewSci 72:18-29.

Hauner M, Eichhorn K, Vearasilp S, Thanapornpoonpong S, Changrue V. 2020. Use and applications of solar heat in the malting and brewing industry – A review. BrewSci 73:6-17.

Hayashi T. 1940. Biochemical studies on ‘Bakanae’ fungus of rice. VI. Effect of Gibberellin on activity of amylase in geminated cereal grains. Bull Agric Chem Soc Japan 16:531-538. DOI: https://doi.org/10.1271/nogeikagaku1924.16.6_531

Herb D, Filichikin T, Fisk S, Helgerson L, Hayes P, Benson A, Vega V Carey D, Theil R, Cistue Jennnings, R., Monsour, R., Tynan, S., Vinkemeir, K., Li, Y., Nguygen, A., Onio, A., Meints B, Moscou M, Romagosa I, Thomas W. 2017. Malt modification and its effects on the contribution of barley genotype to beer flavor. J Am Soc Brew Chem 75:354-362. DOI: https://doi.org/10.1094/ASBCJ-2017-4976-01

Herrera VE, Axcell BC. 1991a. Induction of premature yeast flocculation by a polysaccharide fraction isolated from malt husk. J Inst Brew 97:359-366. DOI: https://doi.org/10.1002/j.2050-0416.1991.tb01076.x

Herrera VE, Axcell BC. 1991b. Studies on the binding between yeast and malt polysaccharide that induces heavy yeast flocculation. J Inst Brew 97:376-373. DOI: https://doi.org/10.1002/j.2050-0416.1991.tb01077.x

Hilhorst HWM. 2007. Definitions and hypotheses of seed dormancy. In: Annual Plant Reviews: Seed Development, Dormancy and Germination. Bradford KJ, Nonogaki H. Oxford, Blackwell Publishing Ltd. 27: 50-71. DOI: https://doi.org/10.1002/9780470988848.ch3

Hirota N, Kuroda H, Takoi T, Kaneko T, Kaneda H, Yoshida I, Takashio M, Ito K, Takeda K. 2006. Development of a novel barley with improved beer foam and flavour stability - the impact of lipoxygenase-1-less barley in the brewing industry. Tech Q Master Brew Assoc Am 43:131-135.

Hodge JE. 1953. Dehydrated foods: chemistry of browning reactions in model systems. Agric Food Chem 1:928-943. DOI: https://doi.org/10.1021/jf60015a004

Hu H, Li P, Wang Y, Gu R. 2014. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem 156:100-109. DOI: https://doi.org/10.1016/j.foodchem.2014.01.067

Hu H, Zhao S, Li P, Shen W. 2018. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol Technol 135:123-130. DOI: https://doi.org/10.1016/j.postharvbio.2017.09.008

Hudson OP. 1985. Centenary review: malting technology. J Inst Brew 92:115-122. DOI: https://doi.org/10.1002/j.2050-0416.1986.tb04384.x

Hugues M, Boivin P, Gauillard F, Nicolas J, Thiry JM, Richard-Forget F. 1994. Two lipoxygenases from germinated barley - heat and kilning stability. J Food Sci 59:885-889. DOI: https://doi.org/10.1111/j.1365-2621.1994.tb08150.x

Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M. 2015. A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination. PLoS ONE 10:1-17. DOI: https://doi.org/10.1371/journal.pone.0143173

Izydorczyk MS, Badea A, Beattie AD. 2023. Physicochemical properties and malting potential of new Canadian hulless barley genotypes. J Am Soc Brew Chem 81:299-307. DOI: https://doi.org/10.1080/03610470.2022.2065453

Jacobsen JV, Pearce DW, Poole AT, Pharis RP, Mander LN. 2002. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant 115:428-441. DOI: https://doi.org/10.1034/j.1399-3054.2002.1150313.x

Jefferys EG. 1970. The gibberellin fermentation. Adv Appl Microbiol 13:283-316. DOI: https://doi.org/10.1016/S0065-2164(08)70407-6

Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W. 2013. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat‐induced oxidative stress via the modulation of heme oxygenase‐1 signalling system. Plant Cell Environ 36:956–969. DOI: https://doi.org/10.1111/pce.12029

Jin Q, Zhu K, Cui W, Li L, Shen W. 2016. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa. J Plant Growth Reg 35:565-573. DOI: https://doi.org/10.1007/s00344-015-9561-2

Jin Y-L, Speers RA, Paulson AT, Stewart RJ. 2004. Barley β-glucans and their degradation during malting and brewing. Tech Q Master Brew Assoc Am 41:231-240.

Jones BL. 2005. Endo-proteinases of barley and malt. J Cereal Sci 42:139-156. DOI: https://doi.org/10.1016/j.jcs.2005.03.007

Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ. 2002. Microwave heating applications in environmental engineering - a review. Res Conserv Recycl 34:75-90. DOI: https://doi.org/10.1016/S0921-3449(01)00088-X

Kageyama N, Inui T, Fukami H, Komura H. 2011. Elucidation of chemical structures of components responsible from beer aftertaste. J Am Soc Brew Chem 69:255-259. DOI: https://doi.org/10.1094/ASBCJ-2011-0901-01

Kageyama N, Inui T, Nakahara K, Fukami H. 2013. Beer aftertaste improved by reducing astringent substances in barley malt with sub critical water treatment. J Am Soc Brew Chem 71:105-108. DOI: https://doi.org/10.1094/ASBCJ-2013-0422-01

Karel V. 1965. The effect of kilning on malt proteins and their fate in brewing. Brewers' Digest 37:102-105, 122-123.

Karsen CM (1980). Environmental conditions and endogenous mechanisms involved in secondary dormancy of seeds. Israel J Plant Sci 29:45-64.

Kaur M, Bowman JP, Stewart DC, Evans DE. 2015. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters. Intl J Food Microbiol 215:71-78. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.08.019

Kavanagh TE, Derbyshire RC, Hildebrand RP, Clarke BJ, Meeker FJ. 1976. Dimethyl sulphide formation in malt - effect of malting conditions. J Inst Brew 82:270-272. DOI: https://doi.org/10.1002/j.2050-0416.1976.tb03768.x

Kelly L, Briggs DE. 1992. Barley maturity and the effects of steep aeration on malting. J Inst Brew 98:329-334. DOI: https://doi.org/10.1002/j.2050-0416.1992.tb01117.x

Kirsop B, Reynolds T, Griffiths C. 1967. The distribution of water in germinating barley. J Inst Brew 73:182–186. DOI: https://doi.org/10.1002/j.2050-0416.1967.tb03033.x

Kishnani P. 2020. Effect of floor germination temperature on dimethyl sulphide precursors present in malt and sensory characteristics of beer. M.Sc. Thesis, Dalhousie University, Halifax, NS.

Kishnani P, Barr L, Speers RA. 2022. Evaluation of dimethyl sulfide thresholds. J Am Soc Brew Chem 80:109-111. DOI: https://doi.org/10.1080/03610470.2021.1945852

Knudsen S, Riis P, Skadhuage B, Bech LM, Olsen O. 2011. Energy saving brewing method. Patent: WO 2011/150933.

Koizumi H, Kato Y, Ogawa T. 2008. Barley malt polysaccarides inducing premature yeast flocculation and their possible mechanism. J Am Soc Brew Chem 66:137-142. DOI: https://doi.org/10.1094/ASBCJ-2008-0614-01

Koizumi H, Kato, Y, Ogawa T. 2009. Structural features of barley malt polysaccharides inducing premature yeast flocculation. J Am Soc Brew Chem 67:129-134. DOI: https://doi.org/10.1094/ASBCJ-2009-0422-01

Kok YJ, Ye L, Muller J, Ow DS-W, Bi X. 2019. Brewing with malted barley or raw barley: what makes the difference in the processes? Appl Microbiol Biotechnol 103:1059-1067. DOI: https://doi.org/10.1007/s00253-018-9537-9

Konopka I, Markowski M, Tanska M, Zmojdo M, Malkowski M, Bialobrzewski I. 2008. Image analysis and quality attributes of malting grain dried with infrared radiation and in a sprouted bed. Intl J Food Sci Technol 43:2047-2055. DOI: https://doi.org/10.1111/j.1365-2621.2008.01820.x

Kranner I, Birtić S. 2005. A modulating role for antioxidants in desiccation tolerance. Integ Comp Biol 45:734-740. DOI: https://doi.org/10.1093/icb/45.5.734

Krstanović V, Klapec T, Velić N, Milaković Z. 2005. Contamination of malt barley and wheat by Fusarium graminearum and Fusarium culmorum from the crop years 2001–2003 in eastern Croatia. Microbiol Res 160:353–359. DOI: https://doi.org/10.1016/j.micres.2005.02.009

Kuntz RJ, Bamforth CW. 2007. Time course for the development of enzymes in barley. J Inst Brew 113:196-205. DOI: https://doi.org/10.1002/j.2050-0416.2007.tb00276.x

Kunze W. 1999. Technology of Brewing and Malting. VLB, Berlin.

Kunze W. 2004. Technology of Brewing and Malting (3rd Intl English Ed). VLB, Berlin,

Laitila A. 2008. More good than bad: microorganisms in the maltings. Brew Distil Intl 4:52-54.

Laitila A, Alakomi H-L, Raaska L, Mattila-Sandholm T, Haikara A. 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting barley. J Appl Microbiol 93:566-576. DOI: https://doi.org/10.1046/j.1365-2672.2002.01731.x

Laitila A, Kotaviita E, Peltola P, Home S, Wilhelmson A. 2007. Indigenous microbial community of barley greatly influences grain germination and malt quality. J Inst Brew 113:9-20. DOI: https://doi.org/10.1002/j.2050-0416.2007.tb00250.x

Laitila A, Sarlin T, Kotaviita E, Huttunen T, Home S, Wilhelmson A. 2007. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J Indust Microbiol Biotech 34:701-713. DOI: https://doi.org/10.1007/s10295-007-0241-5

Laitila A, Schmedding D, van Gestel M, Vlegels P, Haikara A. 199). Lactic acid starter cultures in malting - an application for prevention of wort filtration problems caused by bacteria present in barley containing split kernals. Proc Eur Brew Conv Congr. Cannes, IRL Press: Oxford, p. 559-566.

Lake JC, Speers RA. 2008. A discussion of malt-induced premature yeast flocculation. Tech Q Master Brew Assoc Am 45:253-262. DOI: https://doi.org/10.1094/TQ-45-3-0253

Lan W, Wang W, Yu Z, Qin Y, Luan J, Li X. 2016. Enhanced germination of barley (Hordeum vulgare L.) using chitooligosaccharide as an elicitor in seed priming to improve malt quality. Biotechnol Lett 38:1935-1940. DOI: https://doi.org/10.1007/s10529-016-2181-5

Landau J, Chandra S, Proudlove M. 1996. Stirling barley: A novel problem and possible solutions. Proc 25th Conv Inst Brew (Asia Pacific Sect), Singapore. pp.139-141.

Latimer RA, Lakshminarayanan K, Quittenton RC, Dennis GE. 1966. Enzymes in brewing. Proc 9th Conv Inst Brew (Australian Sect). pp.111-126.

Leymarie J, Robayo-Romero ME, Gendreau E, Benech-Arnold RL, Corbineau F. 2008. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant Cell Physiol 49:1830-1838. DOI: https://doi.org/10.1093/pcp/pcn164

Li L, Lou W, Kong L, Shen W. 2021a. Hydrogen commonly applicable from medicine to agriculture: from molecular mechanisms to the field. Current Pharm Design 27:747-759. DOI: https://doi.org/10.2174/1381612826666201207220051

Li L, Yin Q, Zhang T, Cheng P, Xu S, Shen W. 2021b. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Plants 10:1662. DOI: https://doi.org/10.3390/plants10081662

Li L, Zeng Y, Cheng X, Shen W. 2021. Application of molecular hydrogen in horticulture. Horticul 7:513. DOI: https://doi.org/10.3390/horticulturae7110513

Li Y, Nguyen A, Lodge B, Watts P. 2023. Quality potential of a new Canadian hulless malting barley variety. Tech Q Master Brew Assoc Am 60:25-31. DOI: https://doi.org/10.1094/TQ-60-01-0608-01

Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W. 2007. Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172:544-555. DOI: https://doi.org/10.1016/j.plantsci.2006.11.007

Lowe DP, Arendt EK. 2004. The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: a review. J Inst Brew 110:163-180. DOI: https://doi.org/10.1002/j.2050-0416.2004.tb00199.x

Luo H, Harasymow S, Paynter B, MacLeod A, Izydorczyk MS, O’Donovan JT, Li C. 2019. Genetic and environmental impact on protein profiles in barley and malt. J Inst Brew 125:28-38. DOI: https://doi.org/10.1002/jib.532

Ma Z, Zhang L, Liu J, Dong J, Yin H, Yu J, Huang S, Hu S, Lin H. 2020. Effect of hydrogen peroxide and ozone treatment on improving the malting quality. J Cereal Sci 91:102882. DOI: https://doi.org/10.1016/j.jcs.2019.102882

Macey A, Stowell KC. 1961. Use of gibberellic acid in malting and brewing I. Development of gibberellic acid treatment in malting. J Inst Brew 67:396-404. DOI: https://doi.org/10.1002/j.2050-0416.1961.tb01815.x

MacGregor AW, Macri LJ, Schroeder SW, Bazin SL. 1994. Purification and characterisation of limit dextrinase inhibitors from barley. J Cereal Sci 20:33-41. DOI: https://doi.org/10.1006/jcrs.1994.1042

MacLeod LC, Evans DE. 2016. Barley: malting. In: Encyclopedia of Food Grains. Wrigley C, Corke H, Seetharaman K, Faubion J. Oxford: Academic Press, London: pp. 423-433. DOI: https://doi.org/10.1016/B978-0-12-394437-5.00153-4

MAGB. 2023. The Maltsters’ Association of Great Britain: Barley requirements including MAGB moisture statement.

Magliano PN, Prystupa P, Gutiernez-Boem FH. 2014. Protein content of grains of different size fractions in malting barley. J Inst Brew 120:347-352. DOI: https://doi.org/10.1002/jib.161

Mallett J. 2014. Malt: A Practical Guide from Field to Brewhouse. Brewers Publications, Boulder, Co, USA.

Mares DJ 1987. Pre-harvest sprouting tolerance in white grained wheat. Proc 4th Intl Symp Preharvest Sprouting Cereals, Westview Press, Boulder, Co. pp. 64-74. DOI: https://doi.org/10.1201/9780429038471-7

Martynov VM, Gabitov II, Karimov KT, Masalimov IK, Permyakov VN, Ganeev IR, Saitov I, Saitov B. 2018. Reasoning barley grain drying modes for vacuum-infrared drying machines. J Eng Appl Sci 13:8803-8811.

Mayolle JE, Lullien-Pellerin V, Corbineau F, Boivin P, Guillard, V. 2012. Water diffusion and enzyme activities during malting of barley grains: a relationship assessment. J Food Eng 109:358-365. DOI: https://doi.org/10.1016/j.jfoodeng.2011.11.021

McCaig R, Sawatzky K, Egi A, Li Y. 2006. Brewing with Canadian hull-less barley varieties CDC Freedom, CDC McGwire, and CDC Gainer. J Am Soc Brew Chem 64:118-123. DOI: https://doi.org/10.1094/ASBCJ-64-0118

Medina A, Valle-Algarra FM, Mateo R, Gimeno-Aldelantado JV, Mateo F, Jimenez M. 2006. Survey of mycobiota of Spanish malting barley and evaluation if mycotoxin producing potential of species of Alternaria, Aspergillus and Fusarium. Intl J Food Microbiol 108:196-203. DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.12.003

Meilgaard MC. 1976. Wort composition: with special reference to the use of adjuncts. Tech Q Master Brew Assoc Am 13:78-90.

Melis M. 1993. The 2001 Mash Filter - Practical Experience. Brauwelt Intl 11:120-122.

Mikola J. 1987. Proteinases and peptidases in germinating cereal grains. 4th Intl Symp Pre-Harvest Sprouting Cereals. Mares, D.J. Westview Press, Boulder, CO pp.463-473. DOI: https://doi.org/10.1201/9780429038471-47

Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F. 2006. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8'-hydroxylase. Plant J 45:942-954. DOI: https://doi.org/10.1111/j.1365-313X.2006.02659.x

Montana State University. 2023 Barley Breeding Program - Malt COA Descriptions: Brewer/Distiller's Perspective.

Morgan AG, Gill AA, Smith DB. 1983a. Some barley grain and green malt properties and their influence on malt hot-water extract I. -glucan, -glucan solubilase and endo--glucanase. J Inst Brew 89:283-291. DOI: https://doi.org/10.1002/j.2050-0416.1983.tb04187.x

Morgan AG, Gill AA, Smith DB. 1983b. Some barley grain and green malt properties and their influence on malt hot water extract II. Protein, protease and moisture. J Inst Brew 89:292-298. DOI: https://doi.org/10.1002/j.2050-0416.1983.tb04188.x

Morrall, P.C., and Basson, A.B.K. (1989). The effect of process time on commercial malt quality. Proc 2nd Conv Inst Brew (Central South African Section), Johannesburg. 2: 56-81.

Morrissy C, Davenport C, Fisk S, Johnson V, Culp D, Sutton H, Bettenhausen H, Silberstein R, Hayes P. 2024. Barley variety interacts positively with floor malting to produce different malts and beers. J Inst Brew 130:15-30. DOI: https://doi.org/10.58430/jib.v130i1.43

Muller C, Kunz T, Methner F-J. 2015. The cleaning effect on brewing barley using vibrations during wet steeping. BrewSci 68:29-37.

Muller-Aufferman, K. and Jacob, F. (2014). Single kernel analysis for fractionating cereal batches. Brauwelt Intl 32:25-27.

Munekata H, Kato S. 1957. Studies on ‘Bakanae’ fungus. XXXX. Application of gibberellin to malting industry. Bull Brew Soc, Tokyo 3:1-10.

Muntons Malt. 2021. Streamlined energy and carbon reporting data. https://www.muntons.com/sustainability-data-analysis/.

Narziß L, Back W, Gastl M, Zarnkow M. 2024. Malting technology. In: Applied Malting and Brewing Science: A Weihenstephan compendium’. Wiley-VCH, Baden-Wurttemberg, Germany pp.1-107.

Nishida Y, Tada N, Inui T, Kageyama N, Furukubo S, Takaoka S, Kawasaki Y. 2005. Innovative control technology of malt components by use of a malt factionation technique. Proc Eur Brew Conv Congr. Prague, Fachverlag Hans Carl, Nürnberg, Germany, p. 93-100.

Noots I, Delcour JA, Michiels CW. 1998. From field barley to malt: detection and specification of microbiological activity for quality aspects. Crit Rev Microbiol 25:121-153. DOI: https://doi.org/10.1080/10408419991299257

O'Rourke T. 1999. Adjuncts and their use in the brewing process. Brew Guard 128:32-36.

O'Rourke T. 2002. Malt specifications and brewing performance. Brewer Intl 2:27-30.

O'Sullivan TF, Walsh Y, O'Mahony A, Fitzgerald GF, van Sinderen D. 1999. A comparative study of malthouse and brewhouse microflora. J Inst Brew 105:55-61. DOI: https://doi.org/10.1002/j.2050-0416.1999.tb00006.x

O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Moody D, Ral JP, Colgrave ML. 2023. Proteomic exploration reveals a metabolic rerouting due to low oxygen during controlled germination of malting barley (Hordeum vulgare L.). Front Plant Sci 14:1305381. DOI: https://doi.org/10.3389/fpls.2023.1305381

Ohsawa I., Ishikawa M. Takahashi K. Watanabe M. Nishimaki K. Yamagata K. Katsura KI, Katayama Y, Asoh S, Ohta S. 2007. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Med 13:688-694. DOI: https://doi.org/10.1038/nm1577

Okada T, Yoshizumi H. 1970. A lethal toxic substance for brewing yeast in wheat and barley: (Part 2) Isolation and some properties of toxic principle. Agric Biol Chem 34:1089-1094. DOI: https://doi.org/10.1271/bbb1961.34.1089

Okada T, Yoshizumi H, Terashima Y. 1970. A lethal toxic substance for brewing yeast in wheat and barley: (Part 1) Assay of the toxicity of various grains, and sensitivity of yeast strains. Agric Biol Chem 34:1084-1088. DOI: https://doi.org/10.1271/bbb1961.34.1084

Oliver G. 2011. The Oxford Companion to Beer. Oxford University Press Inc, Oxford UK.

Olkku J, Kotoviita E., Salmenkallio-Marttila M, Sweins H, Home S. 2005. Connection between structure and quality of barley husk. J Am Soc Brewing Chem 63:17-22. DOI: https://doi.org/10.1094/ASBCJ-63-0017

Omari IO, Charnock HM, Fugina AL, Thomson EL, McIndoe JS. 2021. Magnesium-accelerated Maillard reactions drive differences in adjunct and all-malt brewing. J Am Soc Brewing Chem 79:145-155. DOI: https://doi.org/10.1080/03610470.2020.1795437

Osborne TB. 1924. The vegetable proteins. Longmans, Green and Co, London, UK.

Pajunen E, Hummer A. 2007. The impact of technology on the brewing industry. Proc 31st Eur Brew Conv, Venice. presentation #172.

Paleg LG 1960a. Physiological effects of gibberellic acid. I. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiol 35:293-299. DOI: https://doi.org/10.1104/pp.35.3.293

Paleg LG. 1960b. Physiological effects of gibberellic acid. II. On starch hydrolyzing enzymes of barley endosperm. Plant Physiol 35:902-906. DOI: https://doi.org/10.1104/pp.35.6.902

Palmer GH. 1969. Increased endosperm modification of abraded barley grain after gibberellic acid treatment. J Inst Brew 75:536-541. DOI: https://doi.org/10.1002/j.2050-0416.1969.tb03244.x

Palmer GH. 1974. The industrial use of gibberellic acid and its scientific basis-a review. J Inst Brew 80:13–30. DOI: https://doi.org/10.1002/j.2050-0416.1974.tb03578.x

Palmer GH, Barrett J, Kirsop BH. 1970. Malting and brewing properties of abraded barley. J Inst Brew 76:65-68. DOI: https://doi.org/10.1002/j.2050-0416.1970.tb03263.x

Patrick A. 2004. Maltings in England. National Monuments Record Centre, Kemble Drive, Swindon SN2 2GZ, English Heritage.

Paynter BH. 2023. Barley, 2023 Western Australian crop sowing guide. https://www.agric.wa.gov.au/sites/gateway/files/2023%20WA%20Crop%20Sowing%20Guide_3.pdf:82-96.

Petters HI, Flannigan B, Austin B. 1988. Quantitative and qualitative studies of the microflora of barley malt production. J Appl Bact 65:279-297. DOI: https://doi.org/10.1111/j.1365-2672.1988.tb01895.x

Pimenta MJ, Kaneta T, Larondelle Y, Dolmae N, Kamiya Y. 1998. S-adenosyl-L-methionine:L-methionino S-methyltransferase from germinating barley. Plant Physiol 118:431-438. DOI: https://doi.org/10.1104/pp.118.2.431

Pollock JRA. 1959. Studies in barley and malt. XVI. Novel malting technique involving re-steeping. J Inst Brew 65:21-27.

Pollock JRA. 1960. Studies in barley and malt XVI. Novel malting technique involving resteeping. J Inst Brew 66:21-27. DOI: https://doi.org/10.1002/j.2050-0416.1960.tb01694.x

Pollock JRA. 1962. The nature of the malting process. In: Barley and Malt: Biology, Biochemistry, Technology. Cook AH (ed). New York pp.303-398. DOI: https://doi.org/10.1016/B978-1-4832-2769-6.50012-7

Ponton ID, Briggs DE. 1969. Controlling malting losses with anoxia, carbon dioxide and sulphur dioxide. J Inst Brew 75:383-391. DOI: https://doi.org/10.1002/j.2050-0416.1969.tb03231.x

Pool AA. 1962. Studies in barley and malt XXI. Single-vessel system for malting without turning. J Inst Brew 68:476-478. DOI: https://doi.org/10.1002/j.2050-0416.1962.tb01892.x

Prechtl C. 1967. Some practical observations concerning grain bitterness in beers and its amelioration. Tech Q Master Brew Assoc Am 4:98-103.

Prentice N, Sloey W. 1960. Studies on barley microflora of possible importance to malting and brewing quality. I. Treatment of barley during malting with selected microorganisms. J Am Soc Brew Chem 18:28-33. DOI: https://doi.org/10.1080/00960845.1960.12006893

Putman R. 2006. Powells at Portingales Lane. Brew Distil Intl 2:51-53.

Putman R. 2010. The maltings which refused to die: Tucker’s at Newton Abbot in Devon. Brew Distil Intl 6(12):48-52.

Rabie CJ, Lübben A. 1993. The mycoflora of South African barley and barley malt. Proc Sci Tech Conv - Inst Brew, Somerset West, Cape Provence, South Africa. 4:55–73.

Ramanan M, Nelsen T, Lundy M, Diepenbrock C, Fox GP. 2023. Effects of genotype and environment on productivity and quality in Californian malting barley. Agron J 115:2544-2557. DOI: https://doi.org/10.1002/agj2.21433

Rath F. 2009. Gushing in 2008 - trialling the ‘Modified Carlsberg Test’. Brauwelt Intl 27:26-29.

Rathjen JM. 1997. The potential for Vicia sativa L. as a grain legume for South Australia. PhD Thesis, University of Adelaide.

Ratti C. 2001. Hot air and freeze-drying of high-value foods: a review. J Food Eng 49:311-319. DOI: https://doi.org/10.1016/S0260-8774(00)00228-4

Raulio M, Wilhelmson A, Salkinoja-Salonen M, Laitila A. 2009. Ultrastructure of biofilms formed on barley kernals during malting with and without starter culture. Food Microbiol 26:437-443. DOI: https://doi.org/10.1016/j.fm.2009.02.004

Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao, MW. 2017. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 19:566-583. DOI: https://doi.org/10.1111/1462-2920.13498

Rennie H, Ball K. 1979. The influence of malt storage on wort separation. J Inst Brew 85:247-249. DOI: https://doi.org/10.1002/j.2050-0416.1979.tb03917.x

Reuss R, Cassells JA, Green JR, Nischwitz R. 2003. Malting barley: storage, dormancy and processing quality. Proc Aust Postharvest Tech Conf 1:44-48.

Rood L, Koutoulis A, Bowman JP, Evans DE, Stanley RA, Kaur M. 2018. Control of microorganisms on barley grains using peroxyacetic acid and electrolysed water as antimicrobial agents. Food Microbiol 76:103-109. DOI: https://doi.org/10.1016/j.fm.2018.05.002

Rossnagel B. 1999. Hulless barley - The barley of the future? Tech Q Master Brew Assoc Am 36:385-388.

SWAN. 2020. Project SWAN: Recycling of malting process water pp.1-11.

Sadras VO, Hayman PT, Rodriguez D, Monjardino M, Bielich M, Unkovich M, Mudge B, Wang, E. 2016. Interactions between water and nitrogen in Australian cropping systems: physiological, agronomic, economic, breeding and modelling perspectives. Crop Pasture Sci 67:1019-1053. DOI: https://doi.org/10.1071/CP16027

Sallans HR, Anderson JA. 1940. Varietal differences in barley and malts. X. Correlations of carbohydrates with nitrogen fractions and with malt extract, steeping time and malting loss. Can J Res 18:219-229. DOI: https://doi.org/10.1139/cjr40c-024

Sandegren E, Beling H. 1959. Gibberellic acid in malting and brewing. Proc Eur Brew Conv Congr. Rome, Elsevier Scientific Amsterdam, p. 278-289.

Schehl BD, Soriano MA, Arendt EK, Ulmer HM. 2007. Reduction of malting loss using Lactobacilli. Tech Q Master Brew Assoc Am 44:84-92.

Schildbach S. 2005. Water management in malthouses—best practice and its impact on malt quality. Proc Eur Brew Conv Congr. Prague, Fachverlag Hans Carl, Nürnberg, Germany, p. 1276–1290.

Schoals T, Heinrich M. 2020. Breakdown of a malt COA: Bucket analysis approach. Craft Brewers Conference and Brew Expo America.

Schwarz PB, Han JY. 2003. Impact of Fusarium head blight on malting and brewing quality of barley. In: Fusarium head blight of wheat and Barley. Leonard KJ, Bushnell WR (eds). Am Phytopath Soc, St Paul, Minnesota, USA pp.395-419.

Shang X-L, Li X-M, Cai G-L, Lu J. 2014. The role of ferulic acid and arabinoxylan in inducing premature yeast flocculation. J Inst Brew 121:49-54. DOI: https://doi.org/10.1002/jib.204

Shang Y, Wang D, Cai G, Sun J, Li F, Lu J, Yu X. 2020. The effect of microbial arabinoxylanases on premature yeast flocculation. J Inst Brew 126:298-305. DOI: https://doi.org/10.1002/jib.611

Sheehy M, Marafioti A, Krawec C, Lofqvist B, Stewart D. 2009. Active stack management - actively undoing malt quality? Proc 13th Aust Barley Tech Symp, Sunshine Coast, Qld, 12-16 September 2009.

Shokribousjein Z, Deckers SM, Gebruers K, Lorgouilloux Y, Baggerman G, Veraschtert H, Delcour JA, Etieme P, Roch J-M, Derdelinckx G. 2011. Hydrophobins, beer foaming and gushing. Cerevisia 32:85-101. DOI: https://doi.org/10.1016/j.cervis.2010.12.001

Siegel SM, Renwick G, Rosen LA. 1962. Formation of carbon monoxide during seed germination and seedling growth. Science 137:683-684. DOI: https://doi.org/10.1126/science.137.3531.683

Silberberg MS, Amateis P, Venkateswaran R, Chen L. 2006. Chemistry: The molecular nature of matter and change. Vol. 4, McGraw-Hill, New York, USA.

Sissons MJ, Taylor M, Proudlove M. 1995. Barley malt limit dextrinase: its extraction, heat stability and activity during malting and mashing. J Am Soc Brew Chem 53:105-110. DOI: https://doi.org/10.1094/ASBCJ-53-0104

Skadhauge B, Lok F, Breddam K, Olsen O, Bech LM, Knudson S. 2010. Barley with reduced lipoxygenase activity. W. I. P. Organization. Denmark, Carlsberg Breweries and Heineken Supply Chain BV:120.

Smigic N, Djekic I, Tomic N, Udovicki B, Rajkovic A. 2019. The potential of foods treated with supercritical carbon dioxide (sc-CO2) as novel foods. Brit Food J 121:815-834. DOI: https://doi.org/10.1108/BFJ-03-2018-0168

Sommer G. 1977. Reduced effluent steeping in the malting process. J Am Soc Brew Chem 35:9-11. DOI: https://doi.org/10.1094/ASBCJ-35-0009

Sorochinsky V. 2011. Decrease in fuel consumption in direct-flow grain dryers (In Russian). Feed 7:51-52, cited by Martynov et al. 2018.

Sparrow DHB. 1964. Effect of gibberellic acid on the malting of normal, dehusked and embryo-less barley. J Inst Brew 70:514-521. DOI: https://doi.org/10.1002/j.2050-0416.1964.tb06357.x

Sparrow DHB. 1965. Effect of gibberellic acid on the malting of intact and crushed barley. J Inst Brew 71:523-529. DOI: https://doi.org/10.1002/j.2050-0416.1965.tb02083.x

St. Johnston JH. 1954. Physical factors affecting the kilning of barley and malt. J Inst Brew 60:318-340. DOI: https://doi.org/10.1002/j.2050-0416.1954.tb02759.x

Steiner E, Auer A, Becker T, Gastl M. 2012. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. J Sci Food Agric 92:803-813. DOI: https://doi.org/10.1002/jsfa.4651

Stewart D. 2010. Emissions, energy, water and malt: The carbon conundrum in the maltings. Brew Distil Intl 6:38-41.

Stewart DC, Sterenberg N, Washington J, Hughes G. 2004. Hull-less barley - a commercial malting and brewing evaluation. Proc Inst Guild Brew, Asia Pacific, Hanoi. 28th pp.13-15.

Stewart S, Sanders R, Ivanova N, Wilkinson KL, Stewart DC, Dong J, Hu S, Evans DE, Able JA. 2023. The influence of malt variety and origin on wort flavor. J Am Soc Brew Chem 80:282-298. DOI: https://doi.org/10.1080/03610470.2022.2041156

Stopes H. 1885. Malt and Malting, an Historical, Scientific, and Practical Treatise. F.W. Lyon, Brewers’ Journal Office, Eastcheap Buildings, EC, London, UK.

Su J, Nie Y, Zhao G, Cheng D, Wang R, Chen J, Zhang S, Shen W. 2019. Endogenous hydrogen as delays petal senescence and extends the vase life of Lisianthus cut flowers. Postharvest Biol Tech 147:148-155. DOI: https://doi.org/10.1016/j.postharvbio.2018.09.018

Sychra L, Psota V, Marecek J. 2001. Effect of long-term storage of malting barley on malt quality. Monat Brauwissen 54:114-118.

Tada N, Inui T, Kageyama N, Takaoka S, Kawasaki Y. 2004. The influence of malt acrospires on beer taste and foam quality. Tech Q Master Brew Assoc Am 41:305-309.

Takoi K, Kuroda K, Hirota H, Takeda N, Kaneko K, Kaneda T, Hirotaka T. 2004. Barley lipoxygenase 1 gene, method of selecting barley variety, material of malt alcoholic drinks and process for producing malt alcoholic drink. World Intl Patent Org Japan, Sapporo Breweries Ltd Patent:83.

Thomas D. 2014. The Craft Maltsters Handbook. White Mule Press, USA.

Thomas DA. 1986. A novel result of malt fiabilimeter analysis: case-hardened malt. J Inst Brew 92:65-68. DOI: https://doi.org/10.1002/j.2050-0416.1986.tb04374.x

Thompson RC, Kosar WF. 1938. The germination of lettuce seed stimulated by chemical treatment. Science 87(2253):218-219. DOI: https://doi.org/10.1126/science.87.2253.218.b

Turkington TK, Clear RM, Burnett PA, Patrick SK, Orr DD, Xi K. 2002. Fungal pathogens infecting barley and wheat seed from Alberta 1995-1997. Can J Plant Path 24:302-308. DOI: https://doi.org/10.1080/07060660209507013

Turner HM, Elmore L, Walling J, Lachowiec J, Mangel D, Fischer A, Sherman J. 2019. Effect of steeping regime on barley malt quality and its impacts on breeding program selection. J Am Soc Brew Chem 77:267-281. DOI: https://doi.org/10.1080/03610470.2019.1629794

van Campenhout L, Iserentant D, Verachtert H. 1998. On-line measurement of the microbial impacts on the germination of barley during malting. J Inst Brew 104:197-202. DOI: https://doi.org/10.1002/j.2050-0416.1998.tb00991.x

van Campenhout L, Shen H-Y, Iserentant D, Verachtert H. 1999. The gas environment of germinating barley in various microbial states during malting. Process Biochem 34:929-937. DOI: https://doi.org/10.1016/S0032-9592(99)00018-7

van Herwaarden AF, Angus JF, Richards RA, Farquhar GD. 1998. 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser II. Carbohydrate and protein dynamics. Aust J Agric Res 49:1083-1094. DOI: https://doi.org/10.1071/A97040

van Herwaarden AF, Farquhar GD, Angus JF, Richards RA, Howe GN. 1998. 'Haying-off', the negative grain yield response of dryland wheat to nitrogen fertiliser. I. Biomass, grain yield, and water use. Aust J Agric Res 49:1067-1082. DOI: https://doi.org/10.1071/A97039

van Nierop SNE, Cameron-Clarke A, Axcell BC. 2004. Enzymatic generation of factors from malt responsible for premature yeast flocculation. J Am Soc Brew Chem 62:108-116. DOI: https://doi.org/10.1094/ASBCJ-62-0108

van Nierop SNE, Rautenbach M, Axcell BC, Cantrell IC. 2006. The impact of microorganisms on barley and malt quality - a review. J Am Soc Brew Chem 64:69-78. DOI: https://doi.org/10.1094/ASBCJ-64-0069

van Waesberghe JWM. 1991. Practical investigation on the possible impact of mash separation time on beer flavor and its flavor stability influence of the husk fraction. Tech Q Master Brew Assoc Am 28:33-37.

Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G. 2006. The chemistry of beer aging - a critical review. Food Chem 95:357-381. DOI: https://doi.org/10.1016/j.foodchem.2005.01.006

Vaughan A, O'Sullivan T, van Sinderen D. 2005. Enhancing the microbiological stability of malt and beer - review. J Inst Brew 111:355-371. DOI: https://doi.org/10.1002/j.2050-0416.2005.tb00221.x

Wackerbauer K. 1996. Lauter tun versus mash filter. Brauwelt Intl 14:164-165.

Wainwright T. 1986a. The chemistry of nitrosamine formation: relevance to malting and brewing. J Inst Brew 92:49-64. DOI: https://doi.org/10.1002/j.2050-0416.1986.tb04373.x

Wainwright T. 1986b. Nitrosamines in malt and beer. J Inst Brew 92:73-80. DOI: https://doi.org/10.1002/j.2050-0416.1986.tb04376.x

Wallace W, Lance RCM. 1988. The protein reserves of the barley grain and their degradation during malting and brewing. J Inst Brew 96:379-386. DOI: https://doi.org/10.1002/j.2050-0416.1988.tb04598.x

Wang C, Fang H, Gong T, Zhang J, Niu L, Huang D, Huo J, Liao W. 2020. Hydrogen gas alleviates postharvest senescence of cut rose ‘Movie star’ by antagonizing ethylene. Plant Mol Biol 102:271-285. DOI: https://doi.org/10.1007/s11103-019-00946-3

Wang M, Liao W. 2016. Carbon monoxide as a signalling molecule in plants. Frontiers in Plant Sci 7:572. DOI: https://doi.org/10.3389/fpls.2016.00572

Wang R. 2014. Gaso-transmitters: growing pains and joys. Trends Biochem Sci 39:227-232. DOI: https://doi.org/10.1016/j.tibs.2014.03.003

Wang Y, Cheng P, Zhao G, Li L, Shen W. 2022. Phyto-melatonin and gaso-transmitters: a crucial combination for plant physiological functions. J Exp Bot 73:5851-5862. DOI: https://doi.org/10.1093/jxb/erac159

Wang Y, Zheng S, Chen J, Wang Z, He S. 2018. Ammonia (NH3) storage for massive PV electricity. Energy Proc 150:99-105. DOI: https://doi.org/10.1016/j.egypro.2018.09.001

Water IQ. 2023. Optisteep®. https://www.wateriq.nl/optisteep/, date accessed 11/2023.

White FH, Wainwright T. 1976. The measurement of dimethyl sulphide precursor in malts, adjuncts, worts and beers. J Inst Brew 82:46-48. DOI: https://doi.org/10.1002/j.2050-0416.1976.tb03721.x

Whitmore ET. 1960. Rapid method for determination of the husk content of barley and oats. J Inst Brew 66:407-408. DOI: https://doi.org/10.1002/j.2050-0416.1960.tb01733.x

Wilcke WF, Hellevang KJ. 1992. Wheat and barley drying. Minnesota Extension Service, University of Minnesota, Agriculture:AG-FS-5949-A.

Wilhelmson, A., Laitila, A., Vilpola, A., Olkku, J., Kotaviita, E., Fagerstedt, K. and Home, S. 2006. Oxygen deficiency in barley (Hordeum vulgare) grain during malting. J Agric Food Chem 54:409-416. DOI: https://doi.org/10.1021/jf0521505

Wilhelmson A, Vilpola A, Rasanen J, Peltola P, Kotaviita E, Home S, Laitila A. 2008. The use of a modified atmosphere to control malt quality. Master Brew Ass Am Tech Quart 45:245-252. DOI: https://doi.org/10.1094/TQ-45-3-0245

Woonton BW, Jacobsen JV, Sherkat F, Stuart IM. 2005. Changes in germination and malting quality during storage of barley. J Inst Brew 111:33-41. DOI: https://doi.org/10.1002/j.2050-0416.2005.tb00646.x

Woonton BW, Sherkat F, Maharjan P. 2005. The influence of barley storage respiration and glucose-6-phosphate dehydrogenase during malting. J Inst Brew 111:388-395. DOI: https://doi.org/10.1002/j.2050-0416.2005.tb00224.x

Wu Q, Su N, Chen Q, Shen W, Shen Z, Xia Y, Cui J. 2015. Cadmium-induced hydrogen accumulation is involved in cadmium tolerance in Brassica campestris by reestablishment of reduced glutathione homeostasis. PLoS One 10:e0139956. DOI: https://doi.org/10.1371/journal.pone.0139956

Wu Q, Su N, Huang X, Ling X, Yu M, Cui J, Shabala S. 2020. Hydrogen-rich water promotes elongation of hypocotyls and roots in plants through mediating the level of endogenous gibberellin and auxin. Funct Plant Biol 47:771-778. DOI: https://doi.org/10.1071/FP19107

Xie Y, Cai G, Xu M, Han B, Li C, Lu J. 2022. The effect of barley infected with xylanase-producing filamentous fungi on premature yeast flocculation. J Inst Brew 128:162-170. DOI: https://doi.org/10.1002/jib.702

Xie Y, Mao Y, Lai D, Zhang W, Shen W. 2012. H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7:e49800. DOI: https://doi.org/10.1371/journal.pone.0049800

Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. 2014. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165:759-773. DOI: https://doi.org/10.1104/pp.114.237925

Yang G, Schwarz PB. 1995. Activity of lipoxygenase isoenzymes during malting and mashing. J Am Soc Brew Chem 53:45-49. DOI: https://doi.org/10.1094/ASBCJ-53-0045

Yang GU, Schwarz PB, Vick BA. 1993. Purification and characterization of lipoxygenase isoenzymes in germinating barley. Cereal Chem 70:589-589.

Yin H, He Y, Deng Y, Dong J-J, Lu J, Chen L. 2017. Application of Plackett-Burman experimental design for investigating the effect of wort amino acids on flavor-active compounds production during lager yeast fermentation. J Inst Brew 123:300-311. DOI: https://doi.org/10.1002/jib.424

Yin XS. 2021. Practical Brewing Science: Malt. American Society of Brewing Scientists, St Paul, Minnesota.

Yin XS, MacGregor AW, Clear RM. 1989. Field fungi and -glucanase solubilase in barley kernels. J Inst Brew 95:195-198. DOI: https://doi.org/10.1002/j.2050-0416.1989.tb04626.x

Yoshida T, Yamada K, Fujino S, Konmegawa J. 1979. Effect of pressure on the physiological aspects of germinating barleys and quality of malts. Rept Res Lab Kirin Brew Co Ltd 22:11-22. DOI: https://doi.org/10.1094/ASBCJ-37-0077

Yousif AM, Evans DE. 2020. Changes in malt quality during production in two commercial maltings. J Inst Brew 126:233-252. DOI: https://doi.org/10.1002/jib.609

Yousif AM, Evans DE. 2018. The impact of barley nitrogen fertilization rate on barley brewing using a commercial enzyme (Ondea Pro). J Inst Brew 123:132-142. DOI: https://doi.org/10.1002/jib.478

Zhang J, Hao H, Chen M, Wang H, Feng Z, Chen H. 2017. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. Amb Express 7:1-11. DOI: https://doi.org/10.1186/s13568-017-0406-1

Zhang K, Yang J, Qiao Z, Cao X, Luo Q, Zhao J, Wang F, Zhang W. 2019. Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem 293:32-40. DOI: https://doi.org/10.1016/j.foodchem.2019.04.053

Zhu H, Shi C, Xie Y, Cai G, Wu, D., Lu, J. 2024. Effects of hydrogen-rich water on antioxidant activity during barley malting. Syst Microbiol Biomanufact 4:1076–1085. DOI: https://doi.org/10.1007/s43393-024-00244-0

Zhuang S, Shelty R, Hansen M, Fromberg A, Hansen PB, Hobley TJ. 2016. Brewing with 100% unmalted grains: barley, wheat, oat and rye. Eur Food Res Technol 243:447-454. DOI: https://doi.org/10.1007/s00217-016-2758-1

Downloads

Published

16-08-2024

How to Cite

Evans, D. E., Shen, W., & Brookes, P. (2024). Malting - ‘the middle parts of fortune’ - a history of innovation and the enduring quest for efficiency. Journal of the Institute of Brewing, 130(3), 126–181. https://doi.org/10.58430/jib.v130i3.58