Modelling of beer sensory staleness based on flavour instability parameters




beer staling, flavour stability, markers, staling aldehydes, multivariate data analysis, sensory evaluation


Why was the work done: The deterioration of the flavour of fresh beer is challenging for the brewing industry. Despite extensive research on flavour instability, the focus has centred on a limited set of parameters, rather than taking a broader approach.

How was the work done: in this study, the intent was to produce a flavour stable beer. Using a low kilning temperature, malt of low staling potential was used in combination with best brewing practice to produce three batches of unpasteurised top fermented pale beers at a pilot scale. Forty-three markers were analysed in the fresh and aged beers (30°C for 15, 30, 60 and 90 days). Staleness was evaluated by a trained sensory panel and multivariate data analysis was used to explore how the markers contribute to staleness.

What are the main findings: Repeatability was achieved between replicate brews and, subsequently, staling. Polyphenols, haze, total reactive antioxidant potential (TRAP), iso-α-acids, colour, furfural, 2-methylpropanal and 2-methylbutanal showed a strong correlation with staleness. Staleness doubled after 60 days of storage at 30°C, despite volatile aldehydes remaining below their sensory thresholds, implying a synergistic effect of carbonyls contributing to staleness. A Partial Least Square (PLS) model was established, modelling the sensory staleness from 2-methylpropanal, furfural, TRAP and the trans-/cis-iso-α-acids ratio.

Why is the work important: The staling phenomena could be reproduced in beers from parallel brewing trials with only minor variations. The four parameters in PLS modelling indicate that beer staling involves a combination of oxidative and non-oxidative pathways.


Download data is not yet available.


Aerts G, van Waesberghe J. 2007. Innovative wort production in relation to 21st Century wort boiling and optimised beer flavour quality and stability. Proc Eur Brew Conv Congr. Venice, Fachverlag Hans Carl, Nürnberg, Germany, Contribution 56.

Andersen ML, Gundermann M, Danielsen BP, Lund MN. 2017. Kinetic models for the role of protein thiols during oxidation in beer. J Agric Food Chem 65:10820-10828. DOI:

Andersen ML, Outtrup H, Skibsted LH. 2000. Potential antioxidants in beer assessed by ESR spin trapping. J Agric Food Chem 48:3106-3111. DOI:

Andersen ML, Skibsted LH. 1998. Electron spin resonance spin trapping identification of radicals formed during aerobic forced aging of beer. J Agric Food Chem 46:1272-1275. DOI:

Araki S, Kimura T, Shimizu C, Furusho S, Takashio M, Shinotsuka K. 1999. Estimation of antioxidative activity and its relationship to beer flavor stability. J Am Soc Brew Chem 57:34-37. DOI:

Aron PM, Shellhammer TH. 2010. A discussion of polyphenols in beer physical and flavour stability. J Inst Brew 116:369–380. DOI:

Baert J, De Clippeleer J, Hughes PS, De Cooman L, Aerts G. 2012. On the origin of free and bound staling aldehydes in beer. J Agric Food Chem 60:11449-11472. DOI:

Baert J. 2015. Unravelling the role of free and bound-state aldehydes in beer flavour instability. PhD Thesis. KU Leuven, Leuven, Belgium.

Bamforth CW. 2011. 125th anniversary review: The non-biological instability of beer. J Inst Brew 117:488–497. DOI:

Bate-Smith EC. 1973. Haemanalysis of tannins: The concept of relative astringency. Phytochemistry 12:907–912. DOI:

Bravo A, Herrera JC, Scherer E, Ju-Nam Y, Rübsam H, Madrid J, Zufall C, Rangel-Aldao R. 2008. Formation of α-dicarbonyl compounds in beer during storage of pilsner. J Agric Food Chem 56:4134-4144. DOI:

Brewer MS. 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247. DOI:

Briggs DE, Boulton CA, Brookes PA, Stevens R. 2004. Brewing Science and Practice, Woodhead Publishing, Cambridge, England. DOI:

Bustillo Trueba P, Jaskula-Goiris B, De Clippeleer J, Goiris K, Praet T, Sharma UK, Van der Eycken E, Sanders MG, Vincken J-P, De Brabanter J, De Rouck G, Aerts G, De Cooman L. 2019. Validation of an ultra-high-performance liquid chromatography-mass spectrometry method for the quantification of cysteinylated aldehydes and application to malt and beer samples. J Chromatogr A 1604:460467. DOI:

Bustillo Trueba P, Jaskula-Goiris B, Ditrych M, Filipowska W, De Brabanter J, De Rouck G, Aerts G, De Cooman L, De Clippeleer J. 2021. Monitoring the evolution of free and cysteinylated aldehydes from malt to fresh and forced aged beer. Food Res Int 140:110049. DOI:

Caballero I, Blanco CA, Porras M. 2012. Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci Technol 26:21–30. DOI:

Čejka P, Čulík J, Horák T, Jurková M, Olšovská J. 2013. Use of chemical indicators of beer aging for ex-post checking of storage conditions and prediction of the sensory stability of beer. J Agric Food Chem 61:12670-12675. DOI:

Coghe S, Martens E, D'Hollander H, Dirinck PJ, Delvaux FR. 2004. Sensory and instrumental flavour analysis of wort brewed with dark specialty malts. J Inst Brew 110:94-103. DOI:

Davies N. 2006. Malt and malt products, p 68-101. In Bamforth CW (ed), Brewing – New Technologies, Woodhead Publishing, Cambridge, England. DOI:

De Clippeleer J. 2013. Flavour stability of pale lager beer. Chemical-analytical characterisation of critical factors related to wort production and hopping. PhD Thesis. KU Leuven, Leuven, Belgium.

De Clippeleer J, De Cooman L, Aerts G. 2014. Beer’s bitter compounds - a detailed review on iso-α-acids: Current knowledge of the mechanisms for their formation and degradation. BrewSci 67:167-182.

De Clippeleer J, De Rouck G, De Cooman L, Aerts G. 2010. Influence of the hopping technology on the storage‐induced appearance of staling aldehydes in beer. J Inst Brew 116:381-398. DOI:

De Clippeleer J, Van Opstaele F, De Cooman L, Aerts G. 2011. The contribution of aldehydes to the staling taste and odour of pale lager beer. Proc Eur Brew Conv Congr. Glasgow, Fachverlag Hans Carl, Nürnberg, Germany, Contribution L35.

De Cooman L, Aerts G, Overmeire H, De Keukeleire D. 2000. Alterations of the profiles of iso‐α‐acids during beer ageing, marked instability of trans‐iso‐α‐acids and implications for beer bitterness consistency in relation to tetrahydroiso‐α‐acids. J Inst Brew 106:169-178. DOI:

De Rouck G, Jaskula-Goiris B, De Causmaecker B, Van Opstaele F, De Clippeleer J, De Cooman L, Aerts G. 2013. The impact of wort production on the flavour quality and stability of pale lager beer. BrewSci 66:1-11.

Ditrych M, Filipowska W, De Rouck G, Jaskula-Goiris B, Aerts G, Andersen ML, De Cooman L. 2019. Investigating the evolution of free staling aldehydes throughout the wort production process. BrewSci 72:10-17.

Dugulin CA, Clegg SC, De Rouck G, Cook, DJ. (2020). Overcoming technical barriers to brewing with green (non‐kilned) malt: a feasibility study. J Inst Brew 126:24-34. DOI:

Elias RJ, Andersen ML, Skibsted LH, Waterhouse AL. 2009. Key factors affecting radical formation in wine studied by spin trapping and EPR spectroscopy. Am J Enol Vitic 60:471-476. DOI:

Esslinger HM (ed). 2009. Handbook of Brewing: Processes, Technology, Markets. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

European Brewery Convention. 2004. Analytica, Fachverlag Hans Carl, Nürnberg, Germany.

Filipowska W, Jaskula‐Goiris B, Ditrych M, Bustillo Trueba P, De Rouck G, Aerts G, Powell C, Cook D, De Cooman L. 2021. On the contribution of malt quality and the malting process to the formation of beer staling aldehydes: A review. J Inst Brew 127:107-126. DOI:

Foster RT, Samp EJ, Patino H. 2001. Multivariate modeling of sensory and chemical data to understand staling in light beer. J Am Soc Brew Chem 59:201–210. DOI:

Gastl M, Spieleder E, Hermann M, Thiele F, Burberg F, Kogin A, Ikeda H, Back W, Narziss L. 2006. The influence of malt quality and malting technology on the flavour stability of beer. BrewSci 59:163-175.

Giannetti V, Mariani MB, Torrelli P, Marini F. 2019. Flavour component analysis by HS-SPME/GC–MS and chemometric modelling to characterize Pilsner-style Lager craft beers. Microchem J 149:103991. DOI:

Guinard JX, Yip D, Cubero E, Mazzucchelli R. 1998. Quality ratings by experts, and relation with descriptive analysis ratings: a case study with beer. Food Qual Prefer 10:59-67. DOI:

Hoff S, Larsen FH, Andersen ML, Lund MN. 2013. Quantification of thiols using high performance liquid chromatography with fluorescence detection. Analyst 138:2096–2103. DOI:

Hofmann T, Schieberle P. 2000. Formation of aroma-active Strecker-aldehydes by a direct oxidative degradation of Amadori compounds. J Agric Food Chem 48:4301–4305. DOI:

Hysert DW, Morrison NM. 1975. Sulfate metabolism during fermentation. J Am Soc Brew Chem 34:25–31. DOI:

Institute of Brewing. 1997. Methods of Analysis, London, England.

Intelmann D, Demmer O, Desmer N, Hofmann T. 2009. 18O stable isotope labelling, quantitative model experiments, and molecular dynamics simulation studies on the trans-specific degradation of the bitter tasting iso-α-acids of beer. J Agric Food Chem 57:11014-11023. DOI:

Intelmann D, Hofmann T. 2010. On the autoxidation of bitter-tasting iso-α-acids in beer. J Agric Food Chem 58:5059-5067. DOI:

Jaskula B, Goiris K, De Rouck G, Aerts G, De Cooman L. 2007. Enhanced quantitative extraction and HPLC determination of hop and beer bitter acids. J Inst Brew 113:381-390. DOI:

Jaskula-Goiris B, De Causmaecker B, De Rouck G, De Cooman L, Aerts G. 2011. Detailed multivariate modelling of beer staling in commercial pale lagers. BrewSci 64:119-139.

Jongberg S, Andersen ML, Lund MN. 2020a. Characterisation of protein-polyphenol interactions in beer during forced aging. J Inst Brew 126:371–381. DOI:

Jongberg S, Andersen ML, Lund MN. 2020b. Covalent protein-polyphenol bonding as initial steps of haze formation in beer. J Am Soc Brew Chem 78:153–164. DOI:

Kaneda H, Kano Y, Koshino S, Ohya-Nishiguchi H. 1992. Behaviour and role of iron ions in beer deterioration. J Agric Food Chem 40:2102-2107. DOI:

Kaneda H, Kimura T, Kano Y, Koshino S, Osawa T, Kawakishi S. 1991. Role of fermentation conditions on flavor stability of beer. J Ferment Bioeng 72:26-30. DOI:

Kaneda H, Kobayashi N, Furusho S, Sahara H, Koshino S. 1995. Chemical evaluation of beer flavour stability. Tech Q Master Brew Assoc Am 32:76-80.

Kaneda H, Osawa T, Kawakishi S, Munekata M, Koshino S. 1994. Contribution of carbonyl-bisulphite adducts to beer stability. J Agric Food Chem 42:2428-2432. DOI:

Kaneda H, Takashio M, Osawa T, Kawakishi S, Tamaki T. 1996. Behaviour of sulphites during fermentation and storage of beer. J Am Soc Brew Chem 54:115-120. DOI:

Kunz T, Müller C, Methner F-J. 2012. EAP determination and Beverage Antioxidative IndeX (BAX) – advantageous tools for evaluation of the oxidative flavour stability of beer and beverages. BrewSci 65:12– 22.

Kunze W. 2004. Technology Brewing malting. Vlb, Berlin, Germany.

Lehnhardt F, Nobis A, Skornia A, Becker T, Gastl M. 2021a. A Comprehensive evaluation of flavor instability of beer (part 1): Influence of release of bound state aldehydes. Foods 10:2432. DOI:

Lermusieau G, Liégeois C, Collin S. 2001. Reducing power of hop cultivars and beer ageing. Food Chem 72:413–418. DOI:

Malfliet S, Goiris K, Aerts G, De Cooman L. 2009. Analytical‐sensory determination of potential flavour deficiencies of light beers. J Inst Brew 115:49-63. DOI:

Malfliet S, Van Opstaele F, De Clippeleer J, Syryn E, Goiris K, De Cooman L, Aerts G. 2008. Flavour instability of pale lager beers: Determination of analytical markers in relation to sensory ageing. J Inst Brew 114:180-192. DOI:

Martins SI, Van Boekel MA. 2005. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations. Food Chem 92:437-448. DOI:

Mertens T, Kunz T, Gibson BR. 2022. Transition metals in brewing and their role in wort and beer oxidative stability: a review. J Inst Brew 128:77–95. DOI:

Nobis A, Lehnhardt F, Gebauer M, Becker T, Gastl M. 2021a. The influence of proteolytic malt modification on the aging potential of final wort. Foods 10:2320. DOI:

Nobis A, Kwasnicki M, Lehnhardt F, Hellwig M, Henle T, Becker T, Gastl M. 2021b. A comprehensive evaluation of flavor instability of beer (part 2): The influence of de novo formation of aging aldehydes. Foods 10:2668. DOI:

O’Rourke T. 2002. Malt specifications & brewing performance. Brew Int 2:27-30.

Paternoster A, Jaskula-Goiris B, Buyse J, Perkisas T, Springael J, Braet J, De Rouck G, De Cooman L. 2020. The relationship between flavour instability, preference and drinkability of fresh and aged beer. J Inst Brew 126:59–66. DOI:

Paternoster A, Van Camp J, Vanlanduit S, Weeren A, Springael J, Braet J. 2017. The performance of beer packaging: Vibration damping and thermal insulation. Food Packag Shelf Life 11:91-97. DOI:

Paternoster A. 2018. The impact of vibrations, shocks, and temperature during distribution on the flavor quality of bottled beer. PhD Thesis. University of Antwerp, Antwerp, Belgium.

Piazzon A, Forte M, Nardini M. 2010. Characterization of phenolics content and antioxidant activity of different beer types. J Agric Food Chem 58:10677–10683. DOI:

Rizzi GP. 2008. The Strecker degradation of amino acids: Newer avenues for flavor formation. Food Rev Int 24:416–435. DOI:

Saison D, De Schutter DP, Uyttenhove B, Delvaux F, Delvaux FR. 2009. Contribution of staling compounds to the aged flavour of lager beer by studying their flavour thresholds. Food Chem 114:1206-1215. DOI:

Saison D, Vanbeneden N, De Schutter DP, Daenen L, Mertens T, Delvaux F, Delvaux FR. (2010). Characterisation of the flavour and the chemical composition of lager beer after ageing in varying conditions. BrewSci 63:41-53.

Schmelzle A. (2009). The beer aroma wheel. BrewSci 62:26-32.

Thalacker R, Böβendörfer G. 2005. Thiobarbituric acid index (TBI). Brauwelt International 23:35–38.

Uchida M, Suga S, Ono M. 1996. Improvement for oxidative flavor stability of beer - Rapid prediction method for beer flavor stability by electron spin resonance spectroscopy. J Am Soc Brew Chem 54:205–211. DOI:

Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G. 2006. The chemistry of beer aging–a critical review. Food Chem 95:357-381. DOI:

Walker RB, Everette JD. 2009. Comparative reaction rates of various antioxidants with ABTS radical cation. J Agric Food Chem 57:1156–1161. DOI:

Wang Y, Ye L. 2021. Haze in beer: Its formation and alleviating strategies, from a protein–polyphenol complex angle. Foods 10:3114. DOI:

Wietstock PC, Kunz T, Methner FJ. 2016. Relevance of oxygen for the formation of Strecker aldehydes during beer production and storage. J Agric Food Chem 64:8035–8044. DOI:

Wietstock PC, Methner FJ. 2013. Formation of aldehydes by direct oxidative degradation of amino acids via hydroxyl and ethoxy radical attack in buffered model solutions. BrewSci 66:104–113.

Yano M, Morikawa M, Yasui T, Ogawa Y, Ohkochi M. 2004. Influence of wort boiling and wort clarification conditions on cardboard flavor in beer. Tech Q Master Brew Assoc Am 41:317-320.

Zhao H, Li H, Sun G, Yang B, Zhao M. 2013. Assessment of endogenous antioxidative compounds and antioxidant activities of lager beers. J Sci Food Agric 93:910–917. DOI:

Zufall C, Racioppi G, Gasparri M, Franquiz J. 2005. Flavour stability and aging characteristics of light-stable beers. Proc Eur Brew Conv Congr. Prague, Fachverlag Hans Carl, Nürnberg, Germany, Contribution 68.



How to Cite

Ditrych , M., Filipowska, W., Soszka, A., Buyse, J., Hofmann, S., Jensen, S., Jaskula-Goiris, B., De Rouck, G., Aerts, G., Andersen, M. L., & De Cooman, L. (2024). Modelling of beer sensory staleness based on flavour instability parameters. Journal of the Institute of Brewing, 130(1), 47–66.

Most read articles by the same author(s)