Untargeted metabolomic profiling of 100% malt beers versus those containing barley adjunct





unmalted, barley, metabolomics, adjunct, flavour, UHPLC


Why was the work done: The incorporation of unmalted barley at high proportion in the grist can introduce unfavourable bitter and astringent characteristics to beer, resulting in an upper limit on the proportion used. The flavour active compounds from raw barley which contribute these characteristics to the beer remain to be identified.

How was the work done: This study used non-targeted metabolomics to determine non-volatile metabolites which could contribute to flavour differences when brewing with barley. Three beers were analysed using ultra-high performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight mass spectrometer (qTOF) with an electro-spray ionisation source (ESI).  One beer was produced using 100% malt and two beers with a grist of 15% barley and 85% malt (beers A and B).  The barley was used untreated (beer A) or treated using a proprietary process (beer B).  The metabolomic profiles of the three beers were compared and statistically different molecular features were annotated via analysis of MS2 spectra.

What are the main findings: Several of the main differential molecular features were nitrogenous peptides and purine derivatives. This was attributed to the lack of the malting process and associated proteolytic enzyme activity reducing the extent of protein and peptide breakdown in the unmalted barley. Several of the identified peptides had amino acid residues which are known to cause bitter and kokumi (rich) taste in beer, which could explain the bitterness when brewing with unmalted barley.

Why is the work important: A non-targeted approach offers new insights into non-volatile molecular features in beer that have not been previously identified with targeted analyses. Accordingly, this work identifies metabolites and groups of compounds which have not been previously considered when investigating the unfavourable bitterness and astringency associated with the use of unmalted barley


Download data is not yet available.


Aastrup S. 2010. Beer from 100% barley. Scand Brew Rev 67:28-33.

Andrés-Iglesias C, Blanco CA, Blanco J, Montero O. 2014. Mass spectrometry-based metabolomics approach to determine differential metabolites between regular and non-alcohol beers. Food Chem 157:205-212. DOI: https://doi.org/10.1016/j.foodchem.2014.01.123

Bettenhausen HM, Barr L, Broeckling CD, Chaparro JM, Holbrook C, Sedin D, Heuberger AL. 2018. Influence of malt source on beer chemistry, flavor, and flavor stability. Food Res Int 113:487-504. DOI: https://doi.org/10.1016/j.foodres.2018.07.024

Briggs DE, Boulton CA, Brookes PA, Stevens R. 2004. Brewing: Science and Practice, Cambridge, Woodhead Publishing Limited. DOI: https://doi.org/10.1201/9780203024195

Celus I, Brijs K, Delcour JA. 2006. The effects of malting and mashing on barley protein extractability. J Cereal Sci 44:203-211. DOI: https://doi.org/10.1016/j.jcs.2006.06.003

Cheiran KP, Raimundo VP, Manfroi V, Anzanello MJ, Kahmann A, Rodrigues E, Frazzon J. 2019. Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem 286:113-122. DOI: https://doi.org/10.1016/j.foodchem.2019.01.198

Colgrave M, Goswami H, Howitt C, Tanner G. 2012. What is in a beer? Proteomic characterization and relative quantification of hordein (gluten) in beer. J Proteome Res 11:386-96. DOI: https://doi.org/10.1021/pr2008434

Das AJ, Khawas P, Miyaji T, Deka SC. 2014. HPLC and GC-MS analyses of organic acids, carbohydrates, amino acids and volatile aromatic compounds in some varieties of rice beer from northeast india. J Inst Brew 120:244-252. DOI: https://doi.org/10.1002/jib.134

Davy A, Svendsen I, Sørensen SO, Blom Sørensen M, Rouster J, Meldal M, Simpson DJ, Cameron-Mills V. 1998. Substrate specificity of barley cysteine endoproteases ep-a and ep-b. Plant Physiol 117:255-261. DOI: https://doi.org/10.1104/pp.117.1.255

Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S. 2019. Sirius 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299-302. DOI: https://doi.org/10.1038/s41592-019-0344-8

Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, Petras D, Gerwick WH, Rousu J, Dorrestein PC, Böcker S. 2021. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462-471. DOI: https://doi.org/10.1038/s41587-020-0740-8

Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. 2015. Searching molecular structure databases with tandem mass spectra using csi: FingerID. Proc Natl Acad Sci 112:12580-12585. DOI: https://doi.org/10.1073/pnas.1509788112

Feunang YD, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, Fahy E, Steinbeck C, Subramanian S, Bolton E, Greiner R, Wishart DS. 2016. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:1-20. DOI: https://doi.org/10.1186/s13321-016-0174-y

Flodrova D, Salplachta J, Benkovska D, Bobalova J. 2012. Application of proteomics to hordein screening in the malting process. Eur J Mass Spectrom 18:323-332.

Gallart‐Ayala H, Kamleh MA, Hernández‐Cassou S, Saurina J, Checa A. 2016. Ultra‐high‐performance liquid chromatography–high‐resolution mass spectrometry based metabolomics as a strategy for beer characterization. J Inst Brew 122:430-436. DOI: https://doi.org/10.1002/jib.340

Goiris K, Jaskula-Goiris B, Syryn E, Van Opstaele F, De Rouck G, Aerts G, De Cooman L. 2014. The flavoring potential of hop polyphenols in beer. J Am Soc Brew Chem 72:135-142. DOI: https://doi.org/10.1094/ASBCJ-2014-0327-01

Gribkova IN, Kharlamova LN, Lazareva IV, Zakharov MA, Zakharova VA, Kozlov VI. 2022. The influence of hop phenolic compounds on dry hopping beer quality. Molecules 27:740. DOI: https://doi.org/10.3390/molecules27030740

Harris G, Parsons R. 1958. Nitrogenous constituents of brewing materials: X. Utilization of the purines and amino acids of wort by various yeasts. J Inst Brew 64:33-38. DOI: https://doi.org/10.1002/j.2050-0416.1958.tb01653.x

Heuberger AL, Broeckling CD, Lewis MR, Salazar L, Bouckaert P, Prenni JE. 2012. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem 135:1284-1289. DOI: https://doi.org/10.1016/j.foodchem.2012.05.048

Hill AE, Stewart GG. 2019. Free amino nitrogen in brewing. Fermentation 5:22. DOI: https://doi.org/10.3390/fermentation5010022

Hughey CA, Mcminn CM, Phung J. 2016. Beeromics: From quality control to identification of differentially expressed compounds in beer. Metabolomics 12:1-13. DOI: https://doi.org/10.1007/s11306-015-0885-5

Ishibashi N, Arita Y, Kanehisa H, Kouge K, Okai H, Fukui S. 1987. Bitterness of leucine-containing peptides. Agric Biol Chem 51:2389-2394. DOI: https://doi.org/10.1080/00021369.1987.10868411

Ishibashi N, Kubo T, Chino M, Fukui H, Shinoda I, Kikuchi E, Okai H, Fukui S. 1988. Taste of proline-containing peptides. Agric Biol Chem 52:95-98. DOI: https://doi.org/10.1080/00021369.1988.10868632

Jones BL, Budde AD. 2005. How various malt endoproteinase classes affect wort soluble protein levels. J Cereal Sci 41:95-106. DOI: https://doi.org/10.1016/j.jcs.2004.09.007

Kageyama N, Inui T, Fukami H, Komura H. 2011. Elucidation of chemical structures of components responsible for beer aftertaste. J Am Soc Brew Chem 69:255-259. DOI: https://doi.org/10.1094/ASBCJ-2011-0901-01

Kageyama N, Inui T, Nakahara K, Fukami H. 2013. Beer aftertaste improved by reducing astringent substances in the barley malt with subcritical water treatment. J Am Soc Brew Chem 71:105-108. DOI: https://doi.org/10.1094/ASBCJ-2013-0422-01

Kim H-O, Li-Chan ECY. 2006. Quantitative structure−activity relationship study of bitter peptides. J Agric Food Chem 54:10102-10111. j DOI: https://doi.org/10.1021/jf062422j

Kohyama N, Ono H. 2013. Hordatine a β‑D-glucopyranoside from ungerminated barley grains. J Agric Food Chem 61:1112-1116. DOI: https://doi.org/10.1021/jf304453c

Kok YJ, Ye L, Muller J, Ow DS-W, Bi X. 2019. Brewing with malted barley or raw barley: What makes the difference in the processes? Appl Microbiol Biotechnol 103:1059-1067. DOI: https://doi.org/10.1007/s00253-018-9537-9

Krieger T, Eiken J. 2020. brewing a sustainable future with enzymes: A life cycle look at displacing malt with adjuncts and exogenous enzymes. Tech Q Master Brew Assoc Am 57:218-228.

Kunz T, Muller C, Mato-Gonzales D, Methner FJ. 2012. The influence of unmalted barley on the oxidative stability of wort and beer. J Inst Brew 118:32-39. DOI: https://doi.org/10.1002/jib.6

Lee WJ, Pyler RE, Oleson AE. 1986. Nucleic acid degrading enzymes of barley malt. Iii. Adenosine nucleosidase from malted barley. J Am Soc Brew Chem 44:86-90. DOI: https://doi.org/10.1094/ASBCJ-44-0086

Lei H, Zhao H, Zhao M. 2013a. Proteases supplementation to high gravity worts enhances fermentation performance of brewer's yeast. Biochem Eng J 77:1-6. h DOI: https://doi.org/10.1016/j.bej.2013.04.016

Lei H, Zheng L, Wang C, Zhao H, Zhao M. 2013b. Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast. Int J Food Microbiol 161:76-83. DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.11.024

Li Q, Zhang L, Arneborg N, Lametsch R. 2022. Influence of growth medium and yeast species on the formation of γ-glutamyl peptides. LWT 165:113716. DOI: https://doi.org/10.1016/j.lwt.2022.113716

Li Q, Zhang L, Lametsch R. 2020. Current progress in kokumi-active peptides, evaluation and preparation methods: A review. Crit Rev Food Sci Nutr 62:1-12. DOI: https://doi.org/10.1080/10408398.2020.1837726

Lin CL, Petersen MA, Mauch A, Gottlieb A. 2022. Towards lager beer aroma improvement via selective amino acid release by proteases during mashing. J Inst Brew 128:15-21. DOI: https://doi.org/10.1002/jib.682

Liu J, Song H, Liu Y, Li P, Yao J, Xiong J. 2015. Discovery of kokumi peptide from yeast extract by lc-q-tof-ms/ms and sensomics approach. J Sci Food Agric 95:3183-3194. DOI: https://doi.org/10.1002/jsfa.7058

Maehashi K, Huang L. 2009. Bitter peptides and bitter taste receptors. Cell Mol Life Sci 66:1661-71. DOI: https://doi.org/10.1007/s00018-009-8755-9

Mickowska B, Socha P, Urminská D, Cieslik E, Address. 2012. The comparison of prolamins extracted from different varieties of wheat, barley, rye, and triticale species: Amino acid composition, electrophoresis, and immunodetection. J Microbiol Biotechnol Food Sci 1:742-752.

Miyaki T, Kawasaki H, Kuroda M, Miyamura N, Kouda T. 2015. Effect of a kokumi peptide, γ-glutamyl-valyl-glycine, on the sensory characteristics of chicken consommé. Flavour 4:17. DOI: https://doi.org/10.1186/2044-7248-4-17

Miyamura N, Iida Y, Kuroda M, Kato Y, Yamazaki J, Mizukoshi T, Miyano H. 2015. Determination and quantification of kokumi peptide, γ-glutamyl-valyl-glycine, in brewed alcoholic beverages. J Biosci Bioeng 120:311-314. DOI: https://doi.org/10.1016/j.jbiosc.2015.01.018

Molina-Cano JL, Polo JP, Romagosa I, Macgregor AW. 2004. Malting behaviour of barleys grown in Canada and Spain as related to hordein and enzyme content. J Inst Brew 110:34-42. DOI: https://doi.org/10.1002/j.2050-0416.2004.tb00178.x

Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y. 2010. Involvement of the calcium-sensing receptor in human taste perception. J Biosci Bioeng 285:1016-1022. DOI: https://doi.org/10.1074/jbc.M109.029165

Oladokun O, Smart K, Cook D. 2016a. An improved HPLC method for single-run analysis of the spectrum of hop bittering compounds usually encountered in beers. J Inst Brew 122:11-20. DOI: https://doi.org/10.1002/jib.299

Oladokun O, Tarrega A, James S, Smart K, Hort J, Cook D. 2016b. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem 205:212-220. DOI: https://doi.org/10.1016/j.foodchem.2016.03.023

Picariello G, Bonomi F, Iametti S, Rasmussen P, Pepe C, Lilla S, Ferranti P. 2011. Proteomic and peptidomic characterisation of beer: Immunological and technological implications. Food Chem 124:1718-1726. DOI: https://doi.org/10.1016/j.foodchem.2010.07.111

Pihlava J-M. 2014. Identification of hordatines and other phenolamides in barley (Hordeum vulgare) and beer by UPLC-QTOF-MS. J Cereal Sci 60:645-652. DOI: https://doi.org/10.1016/j.jcs.2014.07.002

Riu-Aumatell M, Miró P, Serra-Cayuela A, Buxaderas S, López-Tamames E. 2014. Assessment of the aroma profiles of low-alcohol beers using HS-SPME-GC-MS. Food Res Int 57:196-202. DOI: https://doi.org/10.1016/j.foodres.2014.01.016

Rossi S, Sileoni V, Perretti G, Marconi O. 2014. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J Sci Food Agric 94:919-928. DOI: https://doi.org/10.1002/jsfa.6336

Shewry PR, Faulks AJ, Parmar S, Miflin BJ. 1980. Hordein polypeptide pattern in relation to malting quality and the varietal identification of malted barley grain. J Inst Brew 86:138-141. DOI: https://doi.org/10.1002/j.2050-0416.1980.tb03974.x

Sofyanovich OA, Nishiuchi H, Yamagishi K, Matrosova EV, Serebrianyi VA. 2019. Multiple pathways for the formation of the γ-glutamyl peptides γ-glutamyl-valine and γ-glutamyl-valyl-glycine in Saccharomyces cerevisiae. Plos One 14:e0216622. DOI: https://doi.org/10.1371/journal.pone.0216622

Steiner E, Auer A, Becker T, Gastl M. 2012. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material. J Sci Food Agric 92:803-813. 1 DOI: https://doi.org/10.1002/jsfa.4651

Strouhalova D, Šalplachta J, Benkovska D, Bobalova J. 2012. Application of proteomics to hordein screening in the malting rocess. Eur J Mass Spectrom 18:323-32. DOI: https://doi.org/10.1255/ejms.1184

Swanston JS, Ellis RP, Perez-Vendrell A, Voltas J, Molina-Cano JL. 1997. Patterns of barley grain development in Spain and Scotland and their implications for malting quality. Cereal Chem 74:456-461. DOI: https://doi.org/10.1094/CCHEM.1997.74.4.456

Tatham AS, Shewry PR. 2012. The S-poor prolamins of wheat, barley and rye: Revisited. J Cereal Sci 55:79-99. DOI: https://doi.org/10.1016/j.jcs.2011.10.013

Toelstede S, Dunkel A, Hofmann T. 2009. A series of kokumi peptides impart the long-lasting mouthfulness of matured gouda cheese. J Agric Food Chem 57:1440-1448. DOI: https://doi.org/10.1021/jf803376d

Van Donkelaar LHG, Hageman JA, Oguz S, Noordman TR, Boom RM, Van Der Goot A-J. 2016. Combining unmalted barley and pearling gives good quality brewing. J Inst Brew 122:228-236. DOI: https://doi.org/10.1002/jib.319

Wannenmacher J, Gastl M, Becker T. 2018. Phenolic substances in beer: Structural diversity, reactive potential and relevance for brewing process and beer quality. Comp Rev Food Sci Food Saf 17:953-988. DOI: https://doi.org/10.1111/1541-4337.12352

Xu B, Chung HY. 2019. Quantitative structure-activity relationship study of bitter di-, tri- and tetrapeptides using integrated descriptors. Molecules 24:2846. DOI: https://doi.org/10.3390/molecules24152846

Yang J, Bai W, Zeng X, Cui C. 2019. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties - a review. Trends Food Sci Technol 91:339-346. DOI: https://doi.org/10.1016/j.tifs.2019.07.022

Yorke J, Cook D, Ford R. 2021. Brewing with unmalted cereal adjuncts: Sensory and analytical impacts on beer quality. Beverages 7:4. DOI: https://doi.org/10.3390/beverages7010004

Zhao CJ, Schieber A, Gänzle MG. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations – a review. Food Res Int 89:39-47. DOI: https://doi.org/10.1016/j.foodres.2016.08.042

Zhuang SW, Shetty R, Hansen M, Fromberg A, Hansen PB, Hobley TJ. 2017. Brewing with 100% unmalted grains: Barley, wheat, oat and rye. Eur Food Res Technol 243:447-454. DOI: https://doi.org/10.1007/s00217-016-2758-1




How to Cite

Yorke, J., Dew, T., & Cook, D. (2024). Untargeted metabolomic profiling of 100% malt beers versus those containing barley adjunct. Journal of the Institute of Brewing, 130(1), 31–46. https://doi.org/10.58430/jib.v130i1.46

Most read articles by the same author(s)