This is an outdated version published on 30-01-2024. Read the most recent version.

Applications of diastatic Saccharomyces cerevisiae in brewing, distilling and biofuel production




brewing, diastatic yeast, beer, genome, distilling, biofuel


Why was the work done: Diastatic variants of Saccharomyces cerevisiae are unusual in producing an extracellular glucoamylase which enables the breakdown of starch to fermentable sugars. Diastatic S. cerevisiae has long been viewed negatively as a contaminant of especially beer packaged in cans or bottles. However, this view is being reconsidered due to the opportunities that diastatic strains present for niche fermented products and distillation applications.

What are the main findings: This review highlights the utilisation of diastatic S. cerevisiae for its flavour potential, and processing applications in the brewing, distilling, and biofuel industries. Further, genetic differences are compared with non-diastatic strains of S. cerevisiae, together with commonly employed and emerging methods of detection.

Why is the work important: Diastatic yeast strains can be used to create flavour profiles that resemble traditional beverages and can be used to achieve fermentation with higher attenuation. This offers greater fermentation efficiency in, for example, the development of low-calorie beers. Additionally, the ability of diastatic strains of S. cerevisiae to convert non-fermentable oligosaccharides to fermentable sugars enables applications that range from novel beverages using unusual raw materials to more efficient distillation and biofuel production. The negative attributes that are associated with diastatic S. cerevisiae yeasts can be managed through co-inoculation or hybridisation with standard strains.


Download data is not yet available.


Almeida IC, Pacheco TF, Machado F, Gonçalves SB. 2022. Evaluation of different strains of Saccharomyces cerevisiae for ethanol production from high-amylopectin BRS AG rice (Oryza sativa L.). Sci Rep 12:2122. DOI:

Andrews J, Gilliland RB. 1952. Super attenuation of beer: a study of three organisms capable of causing abnormal attenuations. J Inst Brew 58:189-196. DOI:

Balat M, Balat H. 2009. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273-2282. DOI:

Bamforth CW. 2005. Beer, carbohydrates and diet. J Inst Brew 111:259-264. DOI:

Beverage Information Group. 2021. Beer consumption share in the United States in 2020, by category. Statista.

Begrow W. 2017. Fighting quality threats: notable microbiological contaminations of craft beer in the United States. Brew Beverage Ind Int

Boulton C, Quain D. 2001. Brewing Yeast and Fermentation. Blackwell Science; Iowa State University Press.

Burns LT, Sislak CD, Gibbon NL, Saylor NR, Seymour MR, Shaner LM, Gibney PA. 2021. Improved functional assays and risk assessment for STA1+ strains of Saccharomyces cerevisiae. J Am Soc Brew Chem 79:167-180. DOI:

Capece A, Romaniello R, Siesto G, Romano P. 2018. Conventional and non-conventional yeasts in beer production. Fermentation 4:38. DOI:

Cardona C A, Sánchez Ó J. 2007. Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol 98:2415-2457. DOI:

Condina M R, Dilmetz BA, Razavi Bazaz S, Meneses J, Warkiani ME, Hoffmann P. 2019. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab Chip 19:1961-1970. DOI:

da Silva Fernandes F, de Souza ÉS, Carneiro, LM, Silva JPA, de Souza JVB, da Silva Batista J. 2022. Current ethanol production requirements for the yeast Saccharomyces cerevisiae. Int J Microbiol 2022:7878830. DOI:

Erratt JA, Stewart GG. 1978. Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36:151-161. DOI:

Fung Min L, Michael KP, Dennis S. 2013. Gas fermentation for commercial biofuels production. In F. Zhen (Ed.), Liquid, Gaseous and Solid Biofuels (Chapter 5). IntechOpen. DOI:

Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor,M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen K J. 2016. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166:1397-1410.e1316. DOI:

Garshol LM. 2020. Historical brewing techniques: the lost art of farmhouse brewing. Brewers Publications

Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G. 2006. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends in Biotechnol 24:549-556. DOI:

Haimoto H, Iwata M, Wakai K, Umegaki H. 2008. Long-term effects of a diet loosely restricting carbohydrates on HbA1c levels, BMI and tapering of sulfonylureas in type 2 diabetes: a 2-year follow-up study. Diabetes Res Clin Pract 79:350-356. DOI:

Helbert J R. 1978. Caloric value of beer. J Am Soc Brew Chem 36:66-68. DOI:

Hittinger CT. 2013. Saccharomyces diversity and evolution: a budding model genus. Trends Genet 29:309-317. DOI:

Jespersen L, van der Kühle A, Petersen KM. 2000. Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts. Int J Food Microbiol 60:43-53. DOI:

Jevons AL, Quain DE. 2022. Identification of spoilage microflora in draught beer using culture‐dependent methods. J Appl Microbiol 133:3728-3740. DOI:

Krogerus K, Magalhães F, Kuivanen J, Gibson B. 2019 A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol 103:7597-7615. DOI:

Krogerus K, Gibson B. 2020. A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Appl Microbiol Biotechnol 104:3745-3756. DOI:

Kurniawan YN, Shinohara Y, Sakai H, Magarifuchi T, Suzuki K. 2022. Applications of the third-generation DNA sequencing technology to the detection of hop tolerance genes and discrimination of Saccharomyces yeast strains. J Am Soc Brew Chem 80:161-168. DOI:

Latorre-García L, Adam AC, Manzanares P, Polaina J. 2005. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. J Biotechnol 118:167-176. DOI:

Latorre-García L, Adam AC, Polaina J. 2008. Overexpression of the glucoamylase-encoding STA1 gene of Saccharomyces cerevisiae var. diastaticus in laboratory and industrial strains of Saccharomyces. World J Microbiol Biotechnol 24:2957-2963. DOI:

Lauterbach A, Usbeck JC, Behr J, Vogel RF. 2017. MALDI-TOF MS typing enables the classification of brewing yeasts of the genus Saccharomyces to major beer styles. PLOS ONE 12:e0181694. DOI:

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomber A, Durbin R, Louis EJ. 2009. Population genomics of domestic and wild yeasts. Nature 458:337-341. DOI:

Lu R, Shi T-Q, Lin L, Ledesma-Amaro R, Ji X-J, Huang H. 2022. Advances in metabolic engineering of yeasts for the production of fatty acid-derived hydrocarbon fuels. Green Chem Eng 3:289-303. DOI:

Markowski P. 2004. Farmhouse Ales: Culture and Craftsmanship in the Belgian Tradition. Brewers Publication.

Meier-Dörnberg T, Jacob F, Michel M, Hutzler M. 2017. Incidence of Saccharomyces cerevisiae var. diastaticus in the beverage industry: cases of contamination, 2008–2017. Tech Q Master Brew Assoc Am 54:140-148.

Meier-Dörnberg T, Kory OI, Jacob F, Michel M, Hutzler M. 2018. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization. FEMS Yeast Res 18:foy023 DOI:

Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, LaSala P, Kostrzewa M, Harmsen D. 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946-1954. DOI:

Meng Q, Yang H, Zhang G, Sun W, Ma P, Liu X, Dang L, Li G, Huang X, Wang X, Liu, J, Leng Q. 2021. CRISPR/Cas12a-assisted rapid identification of key beer spoilage bacteria. Innov Food Sci Emerg Technol 74:102854. DOI:

Michel M, Meier-Dörnberg T, Kleucker A, Jacob F, Hutzler M. 2016. A new approach for detecting spoilage yeast in pure bottom-fermenting and pure Torulaspora delbrueckii pitching yeast, propagation yeast, and finished beer. J Am Soc Brew Chem 74, 200-205. DOI:

Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF. 2017. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Rep 10:52-61. DOI:

Mukai N, Masaki K, Fujii T, Iefuji H. 2014. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J Biosci Bioeng 118:50-55. DOI:

Nigam PS. 2017. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Manag 62:255-261. DOI:

Nigam PS, Sing A. 2011. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52-68. DOI:

Ogata T, Iwashita Y, Kawada T. 2017. Construction of a brewing yeast expressing the glucoamylase gene STA1 by mating. J Inst Brew 123:66-69. DOI:

Paraíso F, Pontes A, Neves J, Lebani K, Hutzler M, Zhou N, Sampaio JP. 2023. Do microbes evade domestication? - Evaluating potential ferality among diastatic Saccharomyces cerevisiae. Food Microbiol 115:104320. DOI:

Pauley M, Maskell D. 2017. Mini-Review: The role of Saccharomyces cerevisiae in the production of gin and vodka. Beverages 3:13. DOI:

Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury J-M, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339-344. DOI:

Pontes A, Hutzler M, Brito PH, Sampaio JP. 2020. Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae - phylogeny, phenotypes, ecology and domestication. Microorganisms 8:903. DOI:

Post, D. 2016. Left Hand Brewing recalls milk stout nitro, says foreign yeast put too much fizz in the bottle. The Denver Post.

Pretorius I S, Marmu J. 1988. Localization of yeast glucoamylase genes by PFGE and OFAGE. Current Genetics 14, 9-13. DOI:

Rees R. 2014. 10 Barrel recalls Swill. The Bulletin: Empowering our Community.

Riu-Aumatell M, Vargas L, Vichi S, Guadayol JM, López-Tamames E, Buxaderas S. 2011. Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation–extraction (SDE) coupled to GC–MS. Food Chem 129:557-564. DOI:

Sánchez Ó J, Cardona C A. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technolol 99:5270-5295. DOI:

Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B. 2000. Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275-293. DOI:

Schönling J, Pick E, Peter U, Britton S. 2019. Effect of autolytic by-products on PCR- detection of beer spoilers in yeast slurry. BrewSci 72:168-172. h

Shinohara N, Woo C, Yamamoto N, Hashimoto K, Yoshida-Ohuchi H, Kawakami Y. 2021. Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities. Sci Rep 11:2633. DOI:

Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R. 2018. Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Biotechnol 17:553-570. DOI:

Stewart GG, Panchal CJ, Russell I. 1983. Current developments in the genetic manipulation of brewing yeast strains - a review. J Inst Brew 89:170-188. DOI:

Stewart GG, Russell I. 1987. Biochemistry and genetics of carbohydrate utilization by industrial yeast strains. Pure Appl Chem 59:1493-1500. DOI:

Storgårds E, Tapani K, Hartwall P, Saleva R, Suihko M-L. 2006. Microbial attachment and biofilm formation in brewery bottling plants. J Am Soc Brew Chem 64:8-15. DOI:

Štulíková K, Vrzal T, Kubizniaková P, Enge J, Matoulková D, Brányik T. 2021. Spoilage of bottled lager beer contaminated with Saccharomyces cerevisiae var. diastaticus. J Inst Brew 127:256-261. DOI:

Suiker IM, Arkesteijn GJA, Zeegers PJ, Wösten HAB. 2021. Presence of Saccharomyces cerevisiae subsp. diastaticus in industry and nature and spoilage capacity of its vegetative cells and ascospores. Int J Food Microbiol 347:109173. DOI:

Suiker IM, Wösten HAB. 2022. Spoilage yeasts in beer and beer products. Curr Opin Food Sci 44, 100815. DOI:

Tamaki H. 1978. Genetic studies of ability to ferment starch in Saccharomyces: Gene polymorphism. Mol Gen Genet 164:205-209. DOI:

Uotila I, Krogerus K. 2023. A simple and rapid CRISPR-Cas12a-based detection test for diastatic Saccharomyces cerevisiae. J Inst Brew 129:128-146. DOI:

Verma G, Nigam P, Singh D, Chaudhary K. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour Technol 72:261-266. DOI:

Walker GM, Hill AE. 2016. Saccharomyces cerevisiae in the production of whisk(e)y. Beverages 2:38. DOI:

Wang X, Liao B, Li Z, Liu G, Diao L, Qian F, Yang J, Jiang Y, Zhao S, Li Y, Yang S. 2021. Reducing glucoamylase usage for commercial-scale ethanol production from starch using glucoamylase expressing Saccharomyces cerevisiae. Bioresour Bioprocess 8:20. DOI:

Watson DC. 1993. Yeasts in distilled alcoholic-beverage production, p 215-244. In Rose AH, Harrison JS (eds), The Yeasts, 2nd ed, volume 5, Academic Press, London,UK. DOI:

Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P. 2014. Effects of growth medium on matrix-assisted laser desorption-ionization time of flight mass spectra: a case study of acetic acid bacteria. Appl Environ Microbiol 80:1528-1538. DOI:

Yamashita I, Hatano T, Fukui S. 1984. Subunit structure of glucoamylase of Saccharomyces diastaticus. Agric Biolog Chem 48:1611-1616. DOI:

Yamashita I, Suzuki K, Fukui S. 1986. Proteolytic processing of glucoamylase in the yeast Saccharomyces diastaticus. Agric Biolog Chem 50:475-482. DOI:

Yamauchi H, Yamamoto H, Shibano Y, Amaya N, Saeki T. 1998. Rapid methods for detecting Saccharomyces diastaticus, a beer spoilage yeast, using the polymerase chain reaction. J Am Soc Brew Chem 56:58-63. DOI:

Zaldivar J, Nielsen J, Olsson L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17-34. DOI:





How to Cite

Nemenyi, J., Cardenas-Pinto, S., Martin-Ryals, A., Boz, Z., Budner, D., MacIntosh, A., Zhang, B., & Witrick, K. (2024). Applications of diastatic Saccharomyces cerevisiae in brewing, distilling and biofuel production. Journal of the Institute of Brewing, 130(1), 3–14.